寒假刷题第六天
PTA甲级
1030 Travel Plan
迪杰斯特拉
#include<iostream>
#include<vector>
#include<cstring>using namespace std;const int N = 510 , INF = 0x3f3f3f3f3f;
int n , m , s , d;
int g[N][N] , cost[N][N] , dist[N] , min_cost[N];
bool st[N];
int path[N];int main()
{memset(g , 0x3f , sizeof g) , memset(cost , 0x3f , sizeof cost);memset(dist , 0x3f , sizeof dist) , memset(min_cost , 0x3f , sizeof min_cost);memset(st , 0 , sizeof st);cin >> n >> m >> s >> d;while(m --){int a , b , c , e;cin >> a >> b >> c >> e;g[a][b] = g[b][a] = c;cost[a][b] = cost[b][a] = e;}dist[s] = 0;min_cost[s] = 0;for(int i = 0;i < n;i ++){int t = -1;for(int j = 0;j < n;j ++)if(!st[j] && (t == -1 || dist[t] > dist[j]))t = j;st[t] = true;for(int j = 0;j < n;j ++){if(dist[j] > dist[t] + g[t][j]) {dist[j] = dist[t] + g[t][j];path[j] = t;min_cost[j] = min_cost[t] + cost[t][j];}else if(dist[j] == dist[t] + g[t][j]){if(min_cost[j] > min_cost[t] + cost[t][j]){min_cost[j] = min_cost[t] + cost[t][j];path[j] = t;}}}}vector<int>res;for(int i = d;i != s;i = path[i]) res.push_back(i);res.push_back(s);for(int i = res.size() - 1;i >= 0;i --)cout << res[i] << " ";cout << dist[d] << " " << min_cost[d];return 0;
}
1034 Head of a Gang
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<unordered_set>
#include<vector>
#include<set>using namespace std;typedef pair<string , int> PSI;
int n , k;
unordered_map<string , vector<PSI>>g;
unordered_set<string>se;
unordered_map<string , bool>st;
unordered_map<string , int>total;int dfs(string i , vector<string>&v)
{st[i] = true;v.push_back(i);int sum = 0;for(auto j : g[i]){string x = j.first;int y = j.second;sum += y;if(!st[x]) sum += dfs(x , v);}return sum;
}int main()
{cin >> n >> k;while(n --){string a , b;int x;cin >> a >> b >> x;g[a].push_back({b , x});g[b].push_back({a , x});se.insert(a) , se.insert(b);total[a] += x , total[b] += x;}vector<PSI>res;for(auto i : g){vector<string>v;int sum = dfs(i.first , v) / 2;if(v.size() <= 2) continue;if(sum <= k) continue;string boss = v[0];for(auto j : v)if(total[boss] < total[j]) boss = j;res.push_back({boss , v.size()});}cout << res.size() << endl;sort(res.begin() , res.end());for(auto i : res)cout << i.first << " " << i.second << endl;return 0;
}
相关文章:
寒假刷题第六天
PTA甲级 1030 Travel Plan 迪杰斯特拉 #include<iostream> #include<vector> #include<cstring>using namespace std;const int N 510 , INF 0x3f3f3f3f3f; int n , m , s , d; int g[N][N] , cost[N][N] , dist[N] , min_cost[N]; bool st[N]; int pat…...

深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战
文中程序以Tensorflow-2.6.0为例 部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。 截图和程序部分引用自北京大学机器学习公开课 认识网络的构建结构 在神经网络的构建过程中,都避不开以下几个步骤: 导入网络和依…...

Windows启动MongoDB服务报错(错误 1053:服务没有及时响应启动或控制请求)
问题描述:修改MongoDB服务bin目录下的mongod.cfg,然后在任务管理器找到MongoDB服务-->右键-->点击【开始】,启动失败无提示: 右键点击任务管理器的MongoDB服务-->点击【打开服务】,跳转到服务页面-->找到M…...
Android Framework 常见解决方案(25-2)定制CPUSET解决方案-system修改及编译部分调整
1 原理说明 这个方案有如下基本需求: 构建自定义CPUSET,/dev/cpuset中包含一个全新的cpuset分组。且可以通过set_cpuset_policy和set_sched_policy接口可以设置自定义CPUSET。开机启动后可以通过zygote判定来对特定的应用进程设置CPUSET,并…...

OpenAI推出GPT商店和ChatGPT Team服务
🦉 AI新闻 🚀 OpenAI推出GPT商店和ChatGPT Team服务 摘要:OpenAI正式推出了其GPT商店和ChatGPT Team服务。用户已经创建了超过300万个ChatGPT自定义版本,并分享给其他人使用。GPT商店集结了用户为各种任务创建的定制化ChatGPT&a…...

3D建模素材分层渲染怎么操作?
在3D建模素材分层渲染过程中,需要将场景中的元素分到不同的层里,然后分别进行渲染。以下是一个简单的方法: 1、打开要渲染的3D建模素材。 2、在场景中选择要分层的元素,然后在软件的图层面板中新建图层,将元素拖拽到新…...
SAICP(模拟退火迭代最近点)的实现
SAICP(模拟退火迭代最近点)的实现 注: 本系列所有文章在github开源, 也是我个人的学习笔记, 欢迎大家去star以及fork, 感谢! 仓库地址: pointcloud-processing-visualization 总结一下上周的学习情况 ICP会存在局部最小值的问题, 这个问题可能即使是没有实际遇到过, 也或多…...

FineBI实战项目一(23):订单商品分类词云图分析开发
点击新建组件,创建订单商品分类词云图组件。 选择词云,拖拽catName到颜色和文本,拖拽cat到大小。 将组件拖拽到仪表板。 结果如下:...
DOS命令
当使用DOS命令时,可以在命令提示符下输入各种命令以执行不同的任务。以下是一些常见DOS命令的详细说明: dir (Directory): 列出当前目录中的文件和子目录。 用法: dir [drive:][path][filename] [/p] [/w] cd (Change Directory): 更改当前目录。 用法: …...
【Python】torch中的.detach()函数详解和示例
在PyTorch中,.detach()是一个用于张量的方法,主要用于创建该张量的一个“离断”版本。这个方法在很多情况下都非常有用,例如在缓存释放、模型评估和简化计算图等场景中。 .detach()方法用于从计算图中分离一个张量,这意味着它创建…...

二级域名分发系统源码 对接易支付php源码 全开源
全面开源的易支付PHP源码分享:实现二级域名分发对接 首先,在epay的config.php文件中修改您的支付域名。 随后,在二级域名分发网站上做相应修改。 伪静态 location / { try_files $uri $uri/ /index.php?$query_string; } 源码下载&#…...

二分查找与搜索树的高频问题(算法村第九关白银挑战)
基于二分查找的拓展问题 山峰数组的封顶索引 852. 山脉数组的峰顶索引 - 力扣(LeetCode) 给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i 1] > ... > arr[arr.length - 1…...
Python爬虫快速入门
Python 爬虫Sutdy 1.基本类库 request(请求) 引入 from urllib import request定义url路径 url"http://www.baidu.com"进行请求,返回一个响应对象response responserequest.urlopen(url)读取响应体read()以字节形式打印网页源码 response.read()转码 编码 文本–by…...

部署MinIO
一、安装部署MINIO 1.1 下载 wget https://dl.min.io/server/minio/release/linux-arm64/minio chmod x minio mv minio /usr/local/bin/ # 控制台启动可参考如下命令, 守护进程启动请看下一个代码块 # ./minio server /data /data --console-address ":9001"1.2 配…...

RK3566环境搭建
环境:vmware16,ubuntu 18.04 安装依赖库: sudo apt-get install repo git ssh make gcc libssl-dev liblz4-tool expect g patchelf chrpath gawk texinfo chrpath diffstat binfmt-support qemu-user-static live-build bison flex fakero…...

精确掌控并发:滑动时间窗口算法在分布式环境下并发流量控制的设计与实现
这是《百图解码支付系统设计与实现》专栏系列文章中的第(15)篇,也是流量控制系列的第(2)篇。点击上方关注,深入了解支付系统的方方面面。 上一篇介绍了固定时间窗口算法在支付渠道限流的应用以及使用redis…...

Python展示 RGB立方体的二维切面视图
代码实现 import numpy as np import matplotlib.pyplot as plt# 生成 24-bit 全彩 RGB 立方体 def generate_rgb_cube():# 初始化一个 256x256x256 的三维数组rgb_cube np.zeros((256, 256, 256, 3), dtypenp.uint8)# 填充立方体for r in range(256):for g in range(256):fo…...

03 顺序表
目录 线性表顺序表练习 线性表(Linear list)是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串。。。 线性表在逻辑上时线性结构,是连续的一条直线。但在物理结…...

2023年全球软件开发大会(QCon北京站2023)9月:核心内容与学习收获(附大会核心PPT下载)
随着科技的飞速发展,全球软件开发大会(QCon)作为行业领先的技术盛会,为世界各地的专业人士提供了交流与学习的平台。本次大会汇集了全球的软件开发者、架构师、项目经理等,共同探讨软件开发的最新趋势、技术与实践。本…...
ChatGPT 和 文心一言 的优缺点及需求和使用场景
ChatGPT和文心一言是两种不同的自然语言生成模型,它们有各自的优点和缺点。 ChatGPT(Generative Pre-trained Transformer)是由OpenAI开发的生成式AI模型,它在庞大的文本数据集上进行了预训练,并可以根据输入生成具有上…...

UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...