回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测
回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测
目录
- 回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览








基本介绍
1.Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测(完整源码和数据)
2.优化参数为:学习率,隐含层节点,正则化参数。
3.多特征输入单输出的回归预测。程序内注释详细,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、MAE、MSE、RMSE和MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计
- 完整源码和数据获取方式(资源处下载):Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测。
function [fval,Xfood,gbest_t] = SO(N,T,lb,ub,dim,fobj)
%initial
vec_flag=[1,-1];
Threshold=0.25;
Thresold2= 0.6;
C1=0.5;
C2=.05;
C3=2;
X=initialization(N,dim,ub,lb);
for i=1:Nfitness(i)=feval(fobj,X(i,:));
end
[GYbest, gbest] = min(fitness);
Xfood = X(gbest,:);
%Diving the swarm into two equal groups males and females
Nm=round(N/2);%eq.(2&3)
Nf=N-Nm;
Xm=X(1:Nm,:);
Xf=X(Nm+1:N,:);
fitness_m=fitness(1:Nm);
fitness_f=fitness(Nm+1:N);
[fitnessBest_m, gbest1] = min(fitness_m);
Xbest_m = Xm(gbest1,:);
[fitnessBest_f, gbest2] = min(fitness_f);
Xbest_f = Xf(gbest2,:);
for t = 1:Tdisp([' ',num2str(t),' ε '])Temp=exp(-((t)/T)); %eq.(4)Q=C1*exp(((t-T)/(T)));%eq.(5)if Q>1 Q=1; end% Exploration Phase (no Food)
if Q<Thresholdfor i=1:Nmfor j=1:1:dimrand_leader_index = floor(Nm*rand()+1);X_randm = Xm(rand_leader_index, :);flag_index = floor(2*rand()+1);Flag=vec_flag(flag_index);Am=exp(-fitness_m(rand_leader_index)/(fitness_m(i)+eps));%eq.(7)Xnewm(i,j)=X_randm(j)+Flag*C2*Am*((ub(j)-lb(j))*rand+lb(j));%eq.(6)endendfor i=1:Nffor j=1:1:dimrand_leader_index = floor(Nf*rand()+1);X_randf = Xf(rand_leader_index, :);flag_index = floor(2*rand()+1);Flag=vec_flag(flag_index);Af=exp(-fitness_f(rand_leader_index)/(fitness_f(i)+eps));%eq.(9)Xnewf(i,j)=X_randf(j)+Flag*C2*Af*((ub(j)-lb(j))*rand+lb(j));%eq.(8)endend
else %Exploitation Phase (Food Exists)if Temp>Thresold2 %hotfor i=1:Nmflag_index = floor(2*rand()+1);Flag=vec_flag(flag_index);for j=1:1:dimXnewm(i,j)=Xfood(j)+C3*Flag*Temp*rand*(Xfood(j)-Xm(i,j));%eq.(10)endendfor i=1:Nfflag_index = floor(2*rand()+1);Flag=vec_flag(flag_index);for j=1:1:dimXnewf(i,j)=Xfood(j)+Flag*C3*Temp*rand*(Xfood(j)-Xf(i,j));%eq.(10)endendelse %coldif rand>0.6 %fightfor i=1:Nmfor j=1:1:dimFM=exp(-(fitnessBest_f)/(fitness_m(i)+eps));%eq.(13)Xnewm(i,j)=Xm(i,j) +C3*FM*rand*(Q*Xbest_f(j)-Xm(i,j));%eq.(11)endendfor i=1:Nffor j=1:1:dimFF=exp(-(fitnessBest_m)/(fitness_f(i)+eps));%eq.(14)Xnewf(i,j)=Xf(i,j)+C3*FF*rand*(Q*Xbest_m(j)-Xf(i,j));%eq.(12)endendelse%matingfor i=1:Nmfor j=1:1:dimMm=exp(-fitness_f(i)/(fitness_m(i)+eps));%eq.(17)Xnewm(i,j)=Xm(i,j) +C3*rand*Mm*(Q*Xf(i,j)-Xm(i,j));%eq.(15endendfor i=1:Nffor j=1:1:dimMf=exp(-fitness_m(i)/(fitness_f(i)+eps));%eq.(18)Xnewf(i,j)=Xf(i,j) +C3*rand*Mf*(Q*Xm(i,j)-Xf(i,j));%eq.(16)endend
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测
回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测 目录 回归预测 | Matlab基于SO-GRU蛇群算法优化门控循环单元的数据多输入单输出回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SO-GRU蛇群算法优化门控循环单元的数…...
自然语言处理实战项目25-T5模型和BERT模型的应用场景以及对比研究、问题解答
大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目25-T5模型和BERT模型的应用场景以及对比研究、问题解答。T5模型和BERT模型是两种常用的自然语言处理模型。T5是一种序列到序列模型,可以处理各种NLP任务,而BERT主要用于预训练语言表示。T5使用了类似于BERT的预训…...
分布式搜索——Elasticsearch
Elasticsearch 文章目录 Elasticsearch简介ELK技术栈Elasticsearch和Lucene 倒排索引正向索引倒排索引正向和倒排 ES概念文档和字段索引和映射Mysql与Elasticsearch 安装ES、Kibana安装单点ES创建网络拉取镜像运行 部署kibana拉取镜像部署 安装Ik插件扩展词词典停用词词典 索引…...
用python实现调用nosql
要使用Python调用NoSQL数据库,您需要使用适当的Python库。以下是使用Python调用MongoDB和Redis两个流行的NoSQL数据库的示例: 调用MongoDB 要使用Python调用MongoDB,您需要安装pymongo库。您可以使用以下命令在终端或命令提示符中安装它&…...
setTimeout和setInterval定时器的返回值
nodejs中定时器返回Timer对象,window中定时器返回number,所以可以使用ReturnType预定义类型推断—或者使用window.setInterval代替setInterval https://mybj123.com/13153.html...
C/C++指针
指针(pointer)是C/C语言中的一种数据类型。指针与int、char等数据类型相似,都是在内存中开辟相应类型的数据区域使用,不同的是int存储的是整数值,而指针存储的是内存地址。指针是在内存中开辟指针类型的区域存储内存地…...
2024 基于 Rust 的 linter 工具速度很快
2024 年 Web 工具的一大趋势是使用 Rust 重写现有工具。Rust 是一种出色的编程语言,能生成运行速度惊人的二进制文件,且与其它 Web 工具的互操作性极佳,这得益于 WebAssembly 的帮助。swc 和 Turbopack 等工具的速度提升为快速开发体验带来了…...
JWT相关问题及答案(2024)
1、什么是 JWT,它通常用于什么目的? JWT(JSON Web Token)是一种开放标准(RFC 7519),用于在不同实体之间安全地传输信息。它由三个部分组成:头部(Header)、载…...
Linux例行性工作 at和crontab命令
1,例行性工作 例行性工作 —— 在某一时刻,必须要做的事情 —— 定时任务 (比如:闹钟) 例行性工作分为两种:“单一的例行性工作 at”和“循环的例行性工作 crontab” 2,单一执行的例行性工作 …...
cookie共享和session共享实例演示
1、cookie共享实例 1.test1.share.com/index.php setcookie(dangqian, value, [domain > test1.share.com]); setcookie(gen, value, [domain > share.com]);2、test2.share.com/index.php $cookies $_COOKIE; // 打印所有Cookie的名称和值 foreach ($cookies as $n…...
设计模式之开闭原则:如何优雅地扩展软件系统
在现代软件开发中,设计模式是解决常见问题的最佳实践。其中,开闭原则作为面向对象设计的六大基本原则之一,为软件系统的可维护性和扩展性提供了强大的支持。本文将深入探讨开闭原则的核心理念,以及如何在实际项目中运用这一原则&a…...
Python Pandera 用于数据验证和清洗:是一个强大的工具用起来
今天为大家分享一个非常好用的 Python 库 - pandera。 Github地址:https://github.com/unionai-oss/pandera 在数据科学和数据分析中,数据的质量至关重要。不良的数据质量可能导致不准确的分析和决策。为了确保数据的质量,Python Pandera 库…...
英诺赛科推出BMS方案,搭载100V双向导通VGaN
BMS 俗称电池保姆或电池管家,主要是为了智能化管理及维护各个电池单元,防止电池出现过充电和过放电,保障电池安全使用的同时延长使用寿命。 当前市面上出现的电池管理系统大多数采用 Si MOS,由于 Si MOSFET 具有寄生二极管&#x…...
如何用Mac工具制作“苹果高管形象照”
大伙儿最近有没有刷到“苹果高管形象照”风格,详细说来就是: 以苹果官网管理层简介页面中,各位高管形象照为模型,佐以磨皮、美白、高光等修图术,打造的看上去既有事业又有时间有氧的证件照,又称“苹…...
回环检测算法:Stable Trangle Descriptor
回环检测是指检测传感器的两次测量(如图像、激光雷达扫描)是否发生在同一场景,它是对于SLAM问题至关重要。基于激光雷达的回环检测应该满足如下要求: 无论视点如何变化,回环检测方法应该实现旋转和平移不变性…...
MetaGPT入门(二)
接着MetaGPT入门(一),在文件里再添加一个role类 class SimpleCoder(Role):def __init__(self,name:str"Alice",profile:str"SimpleCoder",**kwargs):super().__init__(name,profile,**kwargs)self._init_actions([Write…...
AI嵌入式K210项目(4)-FPIOA
文章目录 前言一、FPIOA是什么?二、FPIOA代码分析总结 前言 磨刀不误砍柴工,在正式开始学习之前,我们先来了解下K210自带的FPIOA,这个概念可能与我们之前学习STM32有很多不同,STM32每个引脚都有特定的功能,…...
FPGA开发设计
一、概述 FPGA是可编程逻辑器件的一种,本质上是一种高密度可编程逻辑器件。 FPGA的灵活性高、开发周期短、并行性高、具备可重构特性,是一种广泛应用的半定制电路。 FPGA的原理 采用基于SRAM工艺的查位表结构(LUT),…...
上海亚商投顾:沪指冲高回落 旅游板块全天强势
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 沪指昨日冲高回落,创业板指跌近1%,北证50指数跌超3%。旅游、零售板块全天强势…...
Linux网络--- SSH服务
一、ssh服务简介 1、什么是ssh SSH(Secure Shell)是一种安全通道协议,主要用来实现字符界面的远程登录、远程复制等功能。SSH 协议对通信双方的数据传输进行了加密处理,其中包括用户登录时输入的用户口令,SSH 为建立在…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
JDK 17 新特性
#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的ÿ…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
