当前位置: 首页 > news >正文

按键修改阈值功能、报警功能、空气质量功能实现

按键修改阈值功能

        要使用按键,首先要定义按键。通过查阅资料,可知按键的引脚如图所示:按键1(S1)通过KEY0与PA0连接,按键2(S2)通过KEY1与PE2连接,按键3(S3)通过KEY2与PE3连接,按键4(S4)通过KEY3与PE4连接。

按键引脚

        key.c

        这段代码主要是对四个按键进行了初始化配置,使其能够进行读取输入操作。

#include "key.h"void Key_Init()
{GPIO_InitTypeDef  GPIO_InitStructure;/*四个按键*//* GPIOA 引脚的时钟使能  */RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);	/* 配置PA0引脚为输出模式 s1*/GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_0;			//配置的引脚GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IN;		    //输入模式GPIO_InitStructure.GPIO_OType 	= GPIO_OType_PP;		//推挽模式GPIO_InitStructure.GPIO_Speed 	= GPIO_Speed_100MHz;	//速度为100MHzGPIO_InitStructure.GPIO_PuPd 	= GPIO_PuPd_NOPULL;		//上下拉电阻:无上下拉电阻GPIO_Init(GPIOA, &GPIO_InitStructure);/* 配置PE2引脚为输出模式 s2*/GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_2;			//配置的引脚GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IN;		    //输入模式GPIO_InitStructure.GPIO_OType 	= GPIO_OType_PP;		//推挽模式GPIO_InitStructure.GPIO_Speed 	= GPIO_Speed_100MHz;	//速度为100MHzGPIO_InitStructure.GPIO_PuPd 	= GPIO_PuPd_NOPULL;		//上下拉电阻:无上下拉电阻GPIO_Init(GPIOE, &GPIO_InitStructure);/* 配置PE3引脚为输出模式 s3*/GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_3;			//配置的引脚GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IN;		    //输入模式GPIO_InitStructure.GPIO_OType 	= GPIO_OType_PP;		//推挽模式GPIO_InitStructure.GPIO_Speed 	= GPIO_Speed_100MHz;	//速度为100MHzGPIO_InitStructure.GPIO_PuPd 	= GPIO_PuPd_NOPULL;		//上下拉电阻:无上下拉电阻GPIO_Init(GPIOE, &GPIO_InitStructure);/* 配置PE4引脚为输出模式 s4*/GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_4;			//配置的引脚GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_IN;		    //输入模式GPIO_InitStructure.GPIO_OType 	= GPIO_OType_PP;		//推挽模式GPIO_InitStructure.GPIO_Speed 	= GPIO_Speed_100MHz;	//速度为100MHzGPIO_InitStructure.GPIO_PuPd 	= GPIO_PuPd_NOPULL;		//上下拉电阻:无上下拉电阻GPIO_Init(GPIOE, &GPIO_InitStructure);}

        key.h

#ifndef _KEY_H
#define _KEY_H//C文件中需要的其他的头文件
#include <stm32f4xx.h>
#include "sys.h"
#include "delay.h"
#include "math.h"
#include "adc.h"//C文件中定义的函数的声明
void Key_Init(void);#endif

阈值更改函数

        这段代码定义了两个函数。这两个函数用于更改阈值和选择需要调整哪个阈值。

        Yuzhi_change() 函数的作用是根据按键输入更改传入的指针变量 yuzhi 所指向的阈值,函数内部通过判断按键的状态进行阈值的加减操作,最大值为 99,最小值为 1。如果按键 s1 被按下,则阈值加一,D1 灯亮;如果按键 s2 被按下,则阈值减一,D2 灯亮。

        Yuzhi_kind_change() 函数的作用是根据按键输入选择需要调整哪个阈值。函数内部使用一个  switch 语句判断当前需要调整的阈值类型,调用 Yuzhi_change() 函数更改阈值。如果按键s3 被按下,则更改当前需要调整的阈值类型,并且再次调用 Yuzhi_change() 函数更改阈值。此函数的传入参数包括 kind、wendu_yu、yanwu_yu 和 CO_yu,其中 kind 为当前需要调整的阈值类型,取值为 1、2、3,分别对应温度、烟雾、CO 浓度阈值。

//阈值更改函数
void Yuzhi_change(u8 *yuzhi)
{if( PAin(0)== 0 )//s1按下{if( *yuzhi<99 ){PFout(9) = 0;//D1亮(*yuzhi)++;}}elsePFout(9) = 1;//D1灭if( PEin(2)== 0 )//s2按下{if( *yuzhi>1 ){PFout(10) = 0;//D2亮(*yuzhi)--;}}elsePFout(10) = 1;//D2灭}u8 kind = 1;//更改需要调整哪个阈值
void Yuzhi_kind_change(u8 *kind, u8 *wendu_yu, u8 *yanwu_yu, u8 *CO_yu)
{switch(*kind){case 1:Yuzhi_change(&*wendu_yu);break;case 2:Yuzhi_change(&*yanwu_yu);break;case 3:Yuzhi_change(&*CO_yu);break;default :break;}/*按键3实现下调*/if( PEin(3)== 0 ){PEout(13) = 0;if( *kind<3 )(*kind)++;else if( *kind == 3 )*kind = 1;switch(*kind){case 1:Yuzhi_change(&*wendu_yu);break;case 2:Yuzhi_change(&*yanwu_yu);break;case 3:Yuzhi_change(&*CO_yu);break;default :break;}}elsePEout(13) = 1;}

空气质量判断和报警系统

        这段代码实现了一个空气质量判断和报警系统。

        首先,在空气质量判断的部分,根据一定的判断条件,将空气质量分为三个等级。如果 CO_ppm,Smog_ppm 和 buf[2](也就是温度)都小于 25,那么空气质量等级为 1,即为优;如果 CO_ppm,Smog_ppm 和 buf[2] 中任意一个大于 35,那么空气质量等级为 3,即为差;否则,空气质量等级为 2,即为良。

        接着,在报警系统的部分,如果 CO_ppm,Smog_ppm 或 buf[2] 的值大于等于相应的阈值(CO_yu,Smog_yu或Temperature_yu),就会触发报警,此时 PFout(8) 输出高电平,蜂鸣器响起来;否则,PFout(8) 输出低电平,蜂鸣器不响。

        整个代码的功能就是对空气质量进行判断,并在需要时触发报警。

/*空气质量判断*/
if( CO_ppm<25 && Smog_ppm<25 && buf[2]<25 )quality  = 1;
else if( CO_ppm>35 || Smog_ppm>35 || buf[2]>35 )quality = 3;
else quality = 2;/*报警系统*/
if( (CO_ppm >= CO_yu) || (Smog_ppm >= Smog_yu ) || (buf[2]>=Temperature_yu) )PFout(8) = 1;//蜂鸣器叫		
elsePFout(8) = 0;

LED灯定义

        这段代码实现了一个 LED 的初始化。

#include "led.h"void led_init(void)
{GPIO_InitTypeDef GPIO_InitStructure;//1、初始化led对应的引脚 PF9 PF10 PE13 PE14的时钟RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOF, ENABLE);//2、通过结构体初始化led引脚/* 配置PF9 PF10引脚为输出模式 */GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_9 | GPIO_Pin_10;			//配置的引脚GPIO_InitStructure.GPIO_Mode 	= GPIO_Mode_OUT;		//输出模式GPIO_InitStructure.GPIO_OType 	= GPIO_OType_PP;		//推挽模式GPIO_InitStructure.GPIO_Speed 	= GPIO_Speed_100MHz;	//速度为100MHzGPIO_InitStructure.GPIO_PuPd 	= GPIO_PuPd_NOPULL;		//上下拉电阻:无上下拉电阻GPIO_Init(GPIOF, &GPIO_InitStructure);/* 配置PE13 PE14引脚为输出模式 */GPIO_InitStructure.GPIO_Pin 	= GPIO_Pin_13 | GPIO_Pin_14;			//配置的引脚GPIO_Init(GPIOE, &GPIO_InitStructure);PFout(9) = 1;PFout(10) = 1;PEout(13) = 1;PEout(14) = 1;
}

按键4控制OLED显示空气质量和现在可以更改哪一个阈值

        这段代码定义了一个名为s4的函数,它有七个参数:kind、str_shidu、str_temp、str_smog、str_co、str_temp_yu、str_smog_yu、str_co_yu 和 quality。其中,kind表示显示什么类型的数据,如温度、烟雾浓度和CO浓度;str_shidu、str_temp、str_smog 和 str_co分别表示湿度、温度、烟雾浓度和 CO 浓度的数据值;str_temp_yu、str_smog_yu 和 str_co_yu 表示温度、烟雾浓度和CO浓度的阈值;quality表示空气质量的评级。

        函数的主体部分是一个 if 语句,当 PEin(4) 等于0时(即按下按钮 4),执行 if 语句中的代码,否则执行 else 语句中的代码。if 语句中的代码主要是对 OLED 屏幕进行显示,根据 quality 参数的值,显示空气质量的评级(优、良或差),同时根据 kind 参数的值,显示相应的数据类型(温度、烟雾浓度或CO浓度)以及它们的数据值和阈值。

        if语句的最后,通过 PEout(14) = 1;将指示灯 d4 熄灭,等待下一次按下按钮执行函数。

void s4(int kind, char *str_shidu, char *str_temp, char *str_smog, char *str_co, char *str_temp_yu, char *str_smog_yu, char *str_co_yu, u8 quality)
{if( PEin(4)== 0 ){PEout(14) = 0;OLED_Clear();OLED_ShowChinese3(0,0,6,16);//空OLED_ShowChinese3(18,0,7,16);//气OLED_ShowChinese3(36,0,8,16);//质OLED_ShowChinese3(54,0,9,16);//量switch(quality){case 1:OLED_ShowChinese3(72,0,10,16);//优OLED_Refresh();break;case 2:OLED_ShowChinese3(72,0,11,16);//良OLED_Refresh();break;case 3:OLED_ShowChinese3(72,0,12,16);//差OLED_Refresh();break;default :break;}OLED_ShowChinese3(0,16,0,16);//现OLED_ShowChinese3(18,16,1,16);//在OLED_ShowChinese3(36,16,2,16);//可OLED_ShowChinese3(54,16,3,16);//以OLED_ShowChinese3(72,16,4,16);//调OLED_ShowChinese3(90,16,5,16);//整switch(kind){case 1:OLED_ShowChinese2(0,32,0,16);//温OLED_ShowChinese2(18,32,2,16);//度OLED_ShowChinese2(36,32,6,16);//阈OLED_ShowChinese2(54,32,7,16);//值OLED_Refresh();break;case 2:OLED_ShowString(0,32,"CH4",16);OLED_ShowChinese2(36,32,6,16);//阈OLED_ShowChinese2(54,32,7,16);//值OLED_Refresh();break;case 3:OLED_ShowString(0,32,"CO",16);OLED_ShowChinese2(36,32,6,16);//阈OLED_ShowChinese2(54,32,7,16);//值OLED_Refresh();break;default :break;}OLED_Refresh();delay_ms(1500);/********OLED部分*********/OLED_Clear();OLED_ShowChinese2(0,0,1,16);//湿OLED_ShowChinese2(18,0,2,16);//度OLED_ShowChar(36,0,':',16);//:OLED_ShowString(48,0,&*str_shidu,16);OLED_ShowChinese2(87,0,6,16);//阈OLED_ShowChinese2(105,0,7,16);//值OLED_ShowChinese2(0,16,0,16);//温OLED_ShowChinese2(18,16,2,16);//度OLED_ShowChar(36,16,58,16);//26号‘:’,ASC2为58OLED_ShowString(48,16,&*str_temp,16);OLED_ShowString(96,16,&*str_temp_yu,16);OLED_ShowString(0,32,"CH4:",16);OLED_ShowString(32,32,&*str_smog,16);OLED_ShowString(96,32,&*str_smog_yu,16);OLED_ShowString(0,48,"CO: ",16);OLED_ShowString(32,48,&*str_co,16);OLED_ShowString(96,48,&*str_co_yu,16);OLED_Refresh();PEout(14) = 1;}elsePEout(14) = 1;
}

相关文章:

按键修改阈值功能、报警功能、空气质量功能实现

按键修改阈值功能 要使用按键&#xff0c;首先要定义按键。通过查阅资料&#xff0c;可知按键的引脚如图所示&#xff1a;按键1&#xff08;S1&#xff09;通过KEY0与PA0连接&#xff0c;按键2&#xff08;S2&#xff09;通过KEY1与PE2连接&#xff0c;按键3&#xff08;S3&…...

spring重点整理篇--springMVC(嘿嘿,开心哟)

Spring MVC是的基于JavaWeb的MVC框架&#xff0c;是Spring框架中的一个组成部分(WEB模块) MVC设计模式&#xff1a; Controller&#xff08;控制器&#xff09; Model&#xff08;模型&#xff09; View&#xff08;视图&#xff09; 重点来了&#x1f604; SpringMVC的工作机制…...

图像融合评估指标Python版

图像融合评估指标Python版 这篇博客利用Python把大部分图像融合指标基于图像融合评估指标复现了&#xff0c;从而方便大家更好的使用Python进行指标计算&#xff0c;以及一些I/O 操作。除了几个特征互信息的指标没有成功复现之外&#xff0c;其他指标均可以通过这篇博客提到的P…...

20230303----重返学习-函数概念-函数组成-函数调用-形参及匿名函数及自调用函数

day-019-nineteen-20230303-函数概念-函数组成-函数调用-形参及匿名函数及自调用函数 变量 变量声明 变量 声明定义(赋值) var num;num 100; 声明与赋值分开var num 100; 声明时就赋值 赋值只能声明一次&#xff0c;可以赋值无数次 变量声明关键词 varconstletclassfunctio…...

Java面试题总结

文章目录前言1、JDK1.8 的新特性有哪些&#xff1f;2、JDK 和 JRE 有什么区别&#xff1f;3、String&#xff0c;StringBuilder&#xff0c;StringBuffer 三者的区别&#xff1f;4、为什么 String 拼接的效率低&#xff1f;5、ArrayList 和 LinkedList 有哪些区别&#xff1f;6…...

深圳大学计软《面向对象的程序设计》实验7 拷贝构造函数与复合类

A. Point&Circle(复合类与构造) 题目描述 类Point是我们写过的一个类&#xff0c;类Circle是一个新的类&#xff0c;Point作为其成员对象&#xff0c;请完成类Circle的成员函数的实现。 在主函数中生成一个圆和若干个点&#xff0c;判断这些点与圆的位置关系&#xff0c;…...

Java的JVM(Java虚拟机)参数配置

JVM原理 &#xff08;1&#xff09;jvm是java的核心和基础&#xff0c;在java编译器和os平台之间的虚拟处理器&#xff0c;可在上面执行字节码程序。 &#xff08;2&#xff09;java编译器只要面向jvm&#xff0c;生成jvm能理解的字节码文件。java源文件经编译成字节码程序&a…...

leetcode 困难 —— 数据流的中位数(优先队列)

题目&#xff1a; 中位数是有序整数列表中的中间值。如果列表的大小是偶数&#xff0c;则没有中间值&#xff0c;中位数是两个中间值的平均值。 例如 arr [2,3,4] 的中位数是 3 。 例如 arr [2,3] 的中位数是 (2 3) / 2 2.5 。 实现 MedianFinder 类: MedianFinder() 初始化…...

7个常用的原生JS数组方法

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 7个常用的原生JS数组方法一、Array.map()二、Array.filter三、Array.reduce四、Array.forEach五、Array.find六、Array.every七、Array.some总结一、Array.map() 作用&#…...

一、一篇文章打好高数基础-函数

1.连续函数的性质考点分析函数的连续性主要考察函数的奇偶性、有界性、单调性、周期性。例题判断函数的奇偶性的有界区间为&#xff08;&#xff09; A.(-1,0) B(0,1) C(1,2) D(2,3)2.闭区间上连续函数的性质考点分析闭区间上连续函数的性质主要考察函数的最大最小值定理、零点…...

pipenv的基本使用

一. pipenv 基础 pipenv安装&#xff1a; pip install pipenvpipenv常用命令 pipenv --python 3 # 创建python3虚拟环境 pipenv --venv # 查看创建的虚拟环境 pipenv install 包名 # 安装包 pipenv shell # 切换到虚拟环境中 pip list # 查看当前已经安装的包&#xff0…...

OpenCV入门(三)快速学会OpenCV2图像处理基础

OpenCV入门&#xff08;三&#xff09;快速学会OpenCV2图像处理基础 1.颜色变换cvtColor imgproc的模块名称是由image&#xff08;图像&#xff09;和process&#xff08;处理&#xff09;两个单词的缩写组合而成的&#xff0c;是重要的图像处理模块&#xff0c;主要包括图像…...

基于PySide6的MySql数据库快照备份与恢复软件

db-camera 软件介绍 db-camera是一款MySql数据库备份&#xff08;快照保存&#xff09;与恢复软件。功能上与dump类似&#xff0c;但是提供了相对有好的交互界面&#xff0c;能够有效地管理导出的sql文件。 使用场景 开发阶段、测试阶段&#xff0c;尤其适合单人开发的小项目…...

BI不是报表,千万不要混淆

商业智能BI作为商业世界的新宠儿&#xff0c;在市场上实现了高速增长并获得了各领域企业的口碑赞誉。 很多企业把商业智能BI做成了纯报表&#xff0c;二维表格的数据展现形式&#xff0c;也有一些简单的图表可视化。但是这些简单的商业智能BI可视化报表基本上只服务到了一线的…...

sizeof以及strlen的用法以及注意事项

大家都知道&#xff0c;在c中算字符串长度和所占空间大小事不可避免的&#xff0c;甚至再有的时候&#xff0c;我们在写代码的过程中&#xff0c;就会用到这些数据。比如&#xff0c;下面这道题 struct Test { int Num; char *pcName; short sDate; char cha[2]; short sBa[4];…...

数据结构-链表-单链表(3)

目录 1. 顺序表的缺陷 2. 单链表 2.1 单链表的基本结构与接口函数 2.2 重要接口 创建新节点的函数&#xff1a; 2.2.1 尾插 2.2.2 头插 2.2.3 尾删 2.2.4 头删 2.2.5 查找 2.2.6 插入 2.2.7 删除 2.2.8 从pos后面插入 2.2.9 从pos后面删除 3. 链表的缺陷与优势&…...

【SpringBoot初级篇】JdbcTemplate常用方法

【SpringBoot初级篇】JdbcTemplate常用方法JdbcTemplate 查询JdbcTemplate 插入、更新、删除execute执行任意的SQLNamedParameterJdbcTemplate函数场景说明update(String sql, Nullable Object… args)增&#xff0c;删&#xff0c;改queryForObject(sql, Integer.class)查询返…...

React(三):脚手架、组件化、生命周期、父子组件通信、插槽、Context

React&#xff08;三&#xff09;一、脚手架安装和创建1.安装脚手架2.创建脚手架3.看看脚手架目录4.运行脚手架二、脚手架下从0开始写代码三、组件化1.类组件2.函数组件四、React的生命周期1.认识生命周期2.图解生命周期&#xff08;1&#xff09;Constructor&#xff08;2&…...

[教程]使用 Git 克隆指定分支

Git 是我们开发过程中经常使用到的版本管理工具,在平常情况下我们从远程克隆的时候会将整个库克隆下来&#xff0c;这会包括整个版本库的历史提交记录和远程库里的所有分支。但在一些情况下&#xff0c;比如我们并不需要查看历史提交记录而只是希望能够获取到最新的代码&#x…...

Redis实现服务注册与服务发现源码阅读(Go语言)

Redis实现服务注册与服务发现源码阅读 背景 近期在看开源项目CloudWeGo中看到目前GoLang微服务框架Hertz中支持通过Redis实现服务注册与服务发现功能。便想着阅读下源码 源码阅读 gut clone了hertz-contrib后看到在一级目录下有目前各种主流的服务注册与发现的实现方案。为…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

Monorepo架构: Nx Cloud 扩展能力与缓存加速

借助 Nx Cloud 实现项目协同与加速构建 1 &#xff09; 缓存工作原理分析 在了解了本地缓存和远程缓存之后&#xff0c;我们来探究缓存是如何工作的。以计算文件的哈希串为例&#xff0c;若后续运行任务时文件哈希串未变&#xff0c;系统会直接使用对应的输出和制品文件。 2 …...