当前位置: 首页 > news >正文

解压缩工具:Bandizip 中文

bandizip是一款可靠和快速的压缩软件,它可以解压RAR、7Z、ZIP、ISO等数十种格式,也可以压缩7Z、ZIP、ISO等好几种常用格式,在压缩文件方面毫不逊色于winrar,适用于多核心压缩、快速拖放、高速压缩等功能,采用了先进快速的压缩和解压缩的算法,支持任何的主流的文件压缩格式,完全满足各种文件压缩解压缩需求,需要的欢迎下载使用。

超高压缩比

国内首个自主压缩格式,压缩率比RAR/ZIP/7Z 高出10-30%。

兼容性好

支持所有主流的压缩格式,甚至CD/DVD光盘镜像和虚拟机硬盘镜像。

简单易用

简化传统压缩软件的繁琐设置,自动判断根目录文件结构,打开解压文件,简单快捷。

虚拟光驱

支持挂载光盘镜像为虚拟光驱,方便娱乐和学习光盘的读取。

主要功能

支持操作系统: Windows Vista/7/8/10 (x86/x64/ARM64)。

许可类型:免费软件(EULA)。

全能的压缩/解压/浏览/编辑软件。

可提取30多种格式,包括RAR/RAR5/7Z/ZIP等。

包含密码压缩和分卷压缩功能。

支持多核高速压缩。

压缩。

支持的格式: ZIP, 7Z(lzma2), ZIPX(xz), EXE(sfx), TAR, TGZ, LZH(lh7), ISO(joliet), GZ, XZ。

ZIP文件修改(添加/删除/重命名)。

支持多核并行,压缩速度可提升至多达6倍。

加密压缩。

支持AES256加密算法。

支持4GB 以上大小的文件压缩。

对ZIP格式支持Unicode或MBCS文件名。

对ZIP/7z格式可进行分卷压缩。

解压。

支持的格式: 7Z, ACE, AES, ALZ, ARJ, BH, BIN, BZ, BZ2, CAB, Compound(MSI), EGG, GZ, IMG, ISO, ISZ, LHA, LZ, LZH, LZMA, PMA, RAR, RAR5, SFX(EXE), TAR, TBZ, TBZ2, TGZ, TLZ, TXZ, UDF, WIM, XPI, XZ, Z, ZIP, ZIPX, ZPAQ。

轻松查看压缩包内文件。

可只解压选定文件,支持拖拽解压。

可对ZIP和RAR格式添加注释。

一步解压TGZ/TBZ格式的文件。

功能多样

测试文件完整性以确定压缩包是否损坏。

支持修改代码页改。

可集成至资源管理器右键菜单。

相关文章:

解压缩工具:Bandizip 中文

bandizip是一款可靠和快速的压缩软件,它可以解压RAR、7Z、ZIP、ISO等数十种格式,也可以压缩7Z、ZIP、ISO等好几种常用格式,在压缩文件方面毫不逊色于winrar,适用于多核心压缩、快速拖放、高速压缩等功能,采用了先进快速…...

JAVA知识点全面总结2:面向对象

二.面向对象 1.面向对象有哪些重要的关键字?作用是什么? 2.理解多态的使用? 3.接口与抽象类的相同点和不同点? 4.equals和toString的判断? 5.新建对象的流程是什么?new一个对象? 6.深拷贝…...

DNS作用及工作原理

文章目录1. DNS作用2 DNS 三个组成部分:2.1 客户端2.2Local DNS2.3 权威域 DNS 服务器3 工作过程1. DNS作用 DNS 分为 Client 和 Server,Client 扮演发问的角色,也就是问 Server 一个 Domain Name,而 Server 必须要回答此 Domain…...

Android 9.0 wifi的随机mac地址修改为固定不变

1.前言 在9.0的系统rom产品定制化开发中,在系统默认的wifi的mac地址是会在联网前后会变化,因为默认是随机显示mac地址,所以会在连上wifi后mac地址会变动但是如果根据mac地址来升级 会引起一系列问题,为了避免这些问题 所以就要求固定mac地址,这就需要看wifi模块怎么改变ma…...

Apinto 网关 V0.11.1 版本发布,多协议互转,新增编码转换器,接入 Prometheus

Eolink 旗下 Apinto 开源网关再次更新啦~ 一起来看看是否有你期待的功能! 1、协议转换功能上线 之前发布的 Apinto v0.10.0 已经支持了多协议的基本功能,实现多协议支持的一次验证。本次最新版本可以支持 HTTP 与 gRPC、HTTP 与 Dubbo2 之间的协议转换。…...

Android 12.0 根据app包名授予app监听系统通知权限

1.概述 在12.0的系统rom产品定制化开发中,在一些产品rom定制化开发中,系统内置的第三方app需要开启系统通知权限,然后可以在app中,监听系统所有通知,来做个通知中心的功能,所以需要授权 获取系统通知的权限,然后来顺利的监听系统通知。来做系统通知的功能 2.根据app包名…...

mysql视图和存储过程

视图视图就是将一条sql查询语句封装起来,之后使用sql时,只需要查询视图即可,查询视图时会将这条sql语句再次执行一遍。视图不保存数据,数据还是在表中。SELECT 语句所查询的表称为视图的基表,而查询的结果集称为虚拟表…...

uniapp 实现人脸认证

前言 对于前端来说,需要后端提供一个人脸识别接口,前端传入图片,接口识别并返回结果,如此看来,其实前端只需实现图片传入即可,但是其实不然,在传入图片时,需要进行以下几点操作&…...

自学大数据第三天~终于轮到hadoop了

前面那几天是在找大数据的门,其实也是在搞一些linux的基本命令,现在终于轮到hadoop了 Hadoop hadoop的安装方式 单机模式: 就如字面意思,在一台机器上运行,存储是采用本地文件系统,没有采用分布式文件系统~就如我们一开始入门的时候都是从本地开始的; 伪分布式模式 存储采用…...

Unity 入门精要00---Unity提供的基础变量和宏以及一些基础知识

头文件引入: XXPROGRAM ... #include "UnityCG.cginc"; ... ENDXX 常用的结构体(在UnityCg.cginc文件中):在顶点着色器输入和输出时十分好用 。 关于如何使用这些结构体,可在Unity安装文件目录/Editor…...

Kubernetes的网络架构及其安全风险

本博客地址:https://security.blog.csdn.net/article/details/129137821 一、常见的Kubernetes网络架构 如图所示: 说明: 1、集群由多个节点组成。 2、每个节点上运行若干个Pod。 3、每个节点上会创建一个CNI网桥(默认设备名称…...

Blob分析+特征+(差分)

Blob分析特征0 前言1 概念2 方法2.1 图像采集2.2 图像分割2.3 特征提取3 主要应用场景:0 前言 在缺陷检测领域,halcon通常有6种处理方法,包括Blob分析特征、Blob分析特征差分、频域空间域、光度立体法、特征训练、测量拟合,本篇博…...

Flink 提交模式

Flink的部署方式有很多,支持Local,Standalone,Yarn,Docker,Kubernetes模式等。而根据Flink job的提交模式,又可以分为三种模式: 模式1:Application Mode Flink提交的程序,被当做集群内部Application,不再需要Client端做繁重的准备工作。(例如执行main函数,生成JobG…...

网络总结知识点(网络工程师必备)三

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放,树高千尺,落叶归根人生不易,人间真情 目录 前言 51.什么是ARP代理?...

测开:前端基础-css

一、CSS介绍和引用 1.1 css概述 层叠样式表,是一种样式表语言,用来描述HTML和XML文档的呈现。 CSS 用于简化HTML标签,把关于样式部分的内容提取出来,进行单独的控制,使结构与样式分离开发。 CSS 是以HTML为基础&…...

Java学习记录之JDBC

JDBC JDBC 是 Java Database Connectivity 的缩写,是允许Java 程序访问并操作关系型数据库数据的一套 应用程序接口。本身就是一种规范,它提供的接口有一套完整的,可移植的访问底层数据库的程序。 JDBC 的架构 JDBC API支持两层和三层处理…...

矩阵翻硬币

题目描述 小明先把硬币摆成了一个 n 行 m 列的矩阵。 随后,小明对每一个硬币分别进行一次 Q 操作。 对第 x 行第 y 列的硬币进行 Q 操作的定义:将所有第 ix 行,第 jy 列的硬币进行翻转。...

【C语言跬步】——指针数组和数组指针(指针进阶)

一.指针数组和数组指针的区别 1.指针数组是数组,是一种存放指针的数组; 例如: int* arr[10]; 2.数组指针是指针,是一种指向数组的指针,存放的是数组的地址; 例如: int arr[5]; int (p)[5]&a…...

第十四届蓝桥杯模拟赛第三期(Python)

写在前面 包含本次模拟赛的10道题题解能过样例,应该可以AC若有错误,欢迎评论区指出本次题目除了最后两题有些难度,其余题目较为简单,我只将代码和结果给出,如果不能理解欢迎私信我,我会解答滴。start 2022…...

css-盒模型

巧妙运用margin负值盒模型和怪异盒模型(border padding 包含在内)display: block 能让textarea input 水平尺寸自适应父容器? – 不能 * {box-sizing: border-box; // bs: bb }<textarea/> 是替换元素,尺寸由内部元素决定,不受display水平影响. 当然可以直接设置宽度10…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...