当前位置: 首页 > news >正文

机器人持续学习基准LIBERO系列7——计算并可视化点云

0.前置

  • 机器人持续学习基准LIBERO系列1——基本介绍与安装测试
  • 机器人持续学习基准LIBERO系列2——路径与基准基本信息
  • 机器人持续学习基准LIBERO系列3——相机画面可视化及单步移动更新
  • 机器人持续学习基准LIBERO系列4——robosuite最基本demo
  • 机器人持续学习基准LIBERO系列5——获取显示深度图
  • 机器人持续学习基准LIBERO系列6——获取并显示实际深度图

1.前置代码

  • 机器人持续学习基准LIBERO系列6——获取并显示实际深度图

2.重新获取真实深度信息

  • 之前的由于要显示,进行了整数化处理,所以重新获取一下原始真实深度信息
from robosuite.utils.camera_utils import get_real_depth_map
agentview_depth_real = get_real_depth_map(env.sim, agentview_depth)

3.获取图像尺寸

h,w = env_args['camera_heights'],  env_args['camera_widths']

4.创建像素点序列和颜色序列

i = np.zeros([h*w,2])#(点数,像素点二维坐标)
colors = np.zeros([h*w,3])#(点数,像素点对应的RGB值)
for x in range(h):for y in range(w):i[x*h+y] = [x,y]colors[x*h+y] = agentview_image[x,y]

5.获取相机内外参

  • robosuite官方文档有对应函数get_camera_intrinsic_matrix,get_camera_extrinsic_matrix
from robosuite.utils.camera_utils import get_camera_extrinsic_matrix,get_camera_intrinsic_matrixcamera_intrinsic_matrix_ = np.linalg.inv(get_camera_intrinsic_matrix(env.sim,'agentview', env_args['camera_heights'],  env_args['camera_widths']))
camera_extrinsic_matrix_ = np.linalg.inv(get_camera_extrinsic_matrix(env.sim,'agentview'))

6.计算世界坐标系下三维点坐标

  • 相机内外参使用参考公式
    在这里插入图片描述
points = np.zeros([i.shape[0],3])
for num,p in enumerate(i):p_ = (camera_intrinsic_matrix_@np.array([[p[0],p[1],1]]).T).Tp_[0,2] = agentview_depth_real[int(p[0]),int(p[1])]p_ = (camera_extrinsic_matrix_@np.array([p_[0,0],p_[0,1],p_[0,2],1]).T).Tpoints[num] = p_[:-1]
print(points)

7.关闭环境

env.close()
  • 不关闭环境,就是用open3d显示的话,会报错
X Error of failed request:  BadAccess (attempt to access private resource denied)Major opcode of failed request:  152 (GLX)Minor opcode of failed request:  5 (X_GLXMakeCurrent)Serial number of failed request:  183Current serial number in output stream:  183

8.open3d显示点云

import open3d as o3d
pcd_show = o3d.geometry.PointCloud()
pcd_show.points = o3d.utility.Vector3dVector(points[:, :3])
pcd_show.colors = o3d.utility.Vector3dVector(colors[:]/255)
o3d.visualization.draw_geometries([pcd_show])

在这里插入图片描述
在这里插入图片描述

相关文章:

机器人持续学习基准LIBERO系列7——计算并可视化点云

0.前置 机器人持续学习基准LIBERO系列1——基本介绍与安装测试机器人持续学习基准LIBERO系列2——路径与基准基本信息机器人持续学习基准LIBERO系列3——相机画面可视化及单步移动更新机器人持续学习基准LIBERO系列4——robosuite最基本demo机器人持续学习基准LIBERO系列5——…...

基于 Level set 方法的医学图像分割

摘 要 医学图像分割是计算机辅助诊断系统设计中的关键技术。对于医学图像分割问题,它一般可分为两部分:(l)图像中特定目标区域(器官或组织)的识别;(2)目标区域完整性的描述与提取。相比于其他图像,医学图像的复杂性和多样性,使得传统的基于底层图像信息的分割方法很难取得好的…...

【C++入门】C++ STL中string常用函数用法总结

目录 前言 1. string使用 2. string的常见构造 3. string类对象的访问及遍历 迭代器遍历: 访问: 4. string类对象的容量操作 4.1 size和length 4.2 clear、empty和capacity 4.3 reserve和resize reserve resize 5. string类对象的修改操作 push_back o…...

Rust变量、常量声明与基本数据类型

Rust是一门系统级别的编程语言,注重安全性、性能和并发。在这篇博客中,我们将介绍Rust中的变量、常量声明以及基本数据类型,并通过示例说明每一种类型的用法。 变量声明 在Rust中,使用 let 关键字声明变量。变量默认是不可变的&…...

【MATLAB】 SSA奇异谱分析信号分解算法

有意向获取代码,请转文末观看代码获取方式~ 1 基本定义 SSA奇异谱分析(Singular Spectrum Analysis)是一种处理非线性时间序列数据的方法,可以对时间序列进行分析和预测。 它基于构造在时间序列上的特定矩阵的奇异值分解&#…...

Nginx+Tomcat负载均衡、动静分离以及Nginx负载均衡和四层代理

目录 NginxTomcat负载均衡、动静分离 Nginx 负载均衡模式: Nginx 四层代理配置: NginxTomcat负载均衡、动静分离 Nginx 服务器:192.168.80.10:80 Tomcat服务器1:192.168.80.100:80 Tomcat服务器2:192.168.80.101:80…...

Vue3中provide,inject使用

一,provide,inject使用: 应用场景:向孙组件传数据 应用Vue3碎片: ref,reactive,isRef,provide, inject 1.provide,inject使用 a.爷组件引入 import {ref,provide} from vue const drinkListre…...

Django命令模块

这篇文章我们主要来介绍一下关于 Django 的命令模块,我们经常会使用到,比如以下几个常用的命令,都属于 Django 的命令模块: python manage.py makemigrations python manage.py migrate python manage.py startapp python manage…...

【linux驱动开发】在linux内核中注册一个杂项设备与字符设备以及内核传参的详细教程

文章目录 注册杂项设备驱动模块传参注册字符设备 开发环境: windows ubuntu18.04 迅为rk3568开发板 注册杂项设备 相较于字符设备,杂项设备有以下两个优点: 节省主设备号:杂项设备的主设备号固定为 10,在系统中注册多个 misc 设备驱动时&…...

Golang条件编译 | 获取系统的磁盘空间内存占用demo | gopsutil/disk库(跨平台方案)

文章目录 一、Golang条件编译1. 构建标签( Build tags)2. 文件后缀(File suffixes) 二、GO golang 获取磁盘空间 条件编译思路 三、【推荐】使用github.com/shirou/gopsutil/disk这个库,如何获取机器下不同磁盘分区的内容 一、Golang条件编译…...

22/76-池化

池化(最大池化层:选每个kernel中最大的数) 填充、步幅、多个通道: 池化层与卷积层类似,都具有填充和步幅。 没有可学习的参数。 在每个输入通道应用池化层以获得相应的输出通道。 输出通道数输入通道数。 平均池化层…...

江科大STM32 下

目录 ADC数模转换器DMA直接存储器存取USART串口9-2 串口发送接受9-3 串口收发HEX数据包 I2C(mpu6050陀螺仪和加速度计)SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件读写W25Q64 BKP、RTC11.0 Unix时间戳11.1 读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR1…...

利用HTML和CSS实现的浮动布局

代码如下 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>*{m…...

2024年第十届控制、自动化与机器人国际会议(ICCAR 2024)即将召开!

2024年4月27~29日 新加披 会议官网&#xff1a;10th-ICCAR 2024https://iccar.org/index.html 第十届控制、自动化和机器人国际会议将于2024年4月27-29日在新加坡举办。本次会议由新加坡电子学会&#xff0c;IEEE机器人和自动控制协会和IEEE联合主办&#xff0c;并得到北京航空…...

基于python集成学习算法XGBoost农业数据可视化分析预测系统

文章目录 基于python集成学习算法XGBoost农业数据可视化分析预测系统一、项目简介二、开发环境三、项目技术四、功能结构五、功能实现模型构建封装类用于网格调参训练模型系统可视化数据请求接口模型评分 0.5*mse 六、系统实现七、总结 基于python集成学习算法XGBoost农业数据可…...

第29集《佛法修学概要》

丁三、声闻乘 分二&#xff1a;戊一、释义&#xff1b;戊二、四谛法&#xff1b;戊三、结示 请大家打开讲义第八十二页。我们看丁三&#xff0c;声闻乘。 在祖师大德的判教当中&#xff0c;把我们整个大乘的成佛之道分成了三个部分&#xff1a;第一个是安乐道&#xff0c;第…...

奥伦德光电耦合器5G通信领域及其相关领域推荐

光电耦合器是以光为媒介传输电信号的一种电-光-电转换器件。由于该器件使用寿命长、工作温度范围宽&#xff0c;所以在过程控制、工业通信、家用电器、医疗设备、通信设备、计算机以及精密仪器等方面有着广泛应用在当前工艺技术持续发展与提升的过程中&#xff0c;其工作速度、…...

机器学习算法 - 马尔可夫链

马尔可夫链&#xff08;Markov Chain&#xff09;可以说是机器学习和人工智能的基石&#xff0c;在强化学习、自然语言处理、金融领域、天气预测、语音识别方面都有着极其广泛的应用 > The future is independent of the past given the present 未来独立于过去&#xff…...

Linux下防火墙相关命令整理

目录 一.前言二.相关命令整理 一.前言 这篇文章简单整理一下Linux系统中防火墙相关命令。 二.相关命令整理 开启防火墙 systemctl start firewalld关闭防火墙 systemctl stop firewalld重启防火墙 systemctl restart firewalld开机启用防火墙 systemctl enable firewall…...

Python八股文总结

一. Python基本数据结构有哪四种&#xff1f;区别是什么&#xff1f; 列表&#xff08;List&#xff09;元组&#xff08;Tuple&#xff09;字典&#xff08;Dictionary&#xff09;集合&#xff08;Set&#xff09; 区别主要在于它们的可变性&#xff08;是否可以修改&#x…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

R 语言科研绘图第 55 期 --- 网络图-聚类

在发表科研论文的过程中&#xff0c;科研绘图是必不可少的&#xff0c;一张好看的图形会是文章很大的加分项。 为了便于使用&#xff0c;本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中&#xff0c;获取方式&#xff1a; R 语言科研绘图模板 --- sciRplothttps://mp.…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...