当前位置: 首页 > news >正文

FLoyd算法的入门与应用

目录

一、前言

二、FLoyd算法

1、最短路问题

2、Floyd算法 

3、Floyd的特点

4、Floyd算法思想:动态规划

三、例题

1、蓝桥公园(lanqiaoOJ题号1121)

2、路径(2021年初赛 lanqiaoOJ题号1460)


一、前言

本文主要讲了最短路问题,以及解决最短路问题的Floyd算法概念与两道简单的相关例题。

二、FLoyd算法

1、最短路问题

  • 最广为人知的图论问题。
  • 简单图的最短路径

① 树上的路径:任意2点之间只有一条路径

② 所有边长都为 1 的图:用 BFS 搜最短路径,复杂度O(n+m)

  • 普通图的最短路径

① 边长:不一定等于 1,而且可能为负数

② 算法:Floyd、Dijkstra、SPFA 等,各有应用场景,不可互相替代

【最短路算法比较】

2、Floyd算法 

  • 最简单的最短路径算法,代码仅有5行
  • 存图:最简单的矩阵存图
  • 易懂,比暴力的搜索更简单易懂
  • 效率不高,不能用于大图
  • 在某些场景下有自己的优势,难以替代。
def Floyd():for k in range(1,n+1):for i in range(1,n+1):for j in range(1,n+1):if dp[i][k]+dp[k][j]<dp[i][j]:dp[i][j]=dp[i][k]+dp[k][j]

3、Floyd的特点

  • Floyd算法:“多源” 最短路算法,一次计算能得到图中每一对结点之间 (多对多) 的最短路径。
  • Dijkstra、 Bellman-Ford、 SPFA算法:"单源” 最短路径算法 (Single sourceshortest path algorithm),一次计算能得到一个起点到其他所有点 (一对多) 的最短路径。
  • 在截止目前的蓝桥杯大赛中,Floyd算法是最常见的最短路径算法。

4、Floyd算法思想:动态规划

动态规划:求图上两点 i、j 之间的最短距离,按 “从小图到全图” 的步骤,在逐步扩大图的过程中计算和更新最短路。

定义状态:dp[k][i][j],i、j、k 是点的编号,范围 1~n。状态 dp[k][i][j] 表示在包含 1~k 点的子图上,点对 i、j 之间的最短路。

状态转移方程:从子图 1~k-1 扩展到子图 1~k

dp[k][i][j] = min(dp[k-1][i][j], dp[k-1][i][k] +dp[k-1][k][j])

  • 虚线圆圈:包含1~k-1点的子图。
  • dp[k-1][i][j]:虚线子图内的点对 i、j 的最短路;
  • dp[k-1][i][k]+dp[k-1][k][j]:经过 k 点的新路径的长度,即这条路径从 i 出发,先到 k,再从 k 到终点 j。
  • 比较:不经过 k 的最短路径 dp[k-1][i][j] 和经过 k 的新路径,较小者就是新的 dp[k][i][j]。

  • k 从 1 逐步扩展到 n:最后得到的 dp[n][i][j] 是点对 i、j 之间的最短路径长度。
  • 初值 dp[0][i][j]:若 i、j 是直连的,就是它们的边长;若不直连,赋值为无穷大。
  • i、j 是任意点对:计算结束后得到了所有点对之间的最短路。 

【方程的简化】(这里留个眼)

dp[k][i][j] = min(dp[k-1][i][j], dp[k-1][i][k]+dp[k-1][k][j])

用滚动数组简化:

dp[i][j]=min(dp[i][j], dp[i][k] + dp[k][j])

【Floyd算法总结】

  • 1)在一次计算后求得所有结点之间的最短距离。
  • 2)代码极其简单,是最简单的最短路算法。
  • 3)效率低下,计算复杂度是 O(n^3),只能用于 n <300 的小规模的图。
  • 4)存图用邻接矩阵 dp[][] 。因为 Floyd 算法计算的结果是所有点对之间的最短路,本身就需要 n^2 的空间,用矩阵存储最合适。
  • 5)能判断负圈。负圈:若图中有权值为负的边,某个经过这个负边的环路,所有边长相加的总长度也是负数,这就是负圈。在这个负圈上每绕一圈,总长度就更小,从而陷入在负圈上兜圈子的死循环。
  • Floyd算法很容易判断负圈,只要在算法运行过程出现任意一个 dp[i][j]<0 就说明有负圈。因为 dp[i][j] 是从 i 出发,经过其他中转点绕一圈回到自己的最短路径,如果小于零,就存在负圈。

三、例题

1、蓝桥公园(lanqiaoOJ题号1121)

【题目描述】

小明来到了蓝桥公园。已知公园有 N 个景点,景点和景点之间一共有 M 条道路。小明有 Q 个观景计划,每个计划包含一个起点 st 和一个终点 ed,表示他想从 st 去到 ed。但是小明的体力有限,对于每个计划他想走最少的路完成,你可以帮帮他吗?

【输入描述】

输入第一行包含三个正整数 N, M, Q。第 2 到 M+1 行每行包含三个正整数 u, v, w,表示 u、v 之间存在一条距离为 w 的路。第 M+2 到 M+Q-1 行每行包含两个正整数 st, ed,其含义如题所述。

1<=N<=400, 1<=M<=N*(N-1)/2, Q<=10^3, 1<=u, v, st, ed<=n, 1<=w<=10^9

【输出描述】

输出共 Q 行,对应输入数据中的查询。若无法从 st 到达 ed 则输出 -1。

def floyd():global mpglobal Nglobal Mglobal Qfor k in range(1,N+1):for i in range(1,N+1):for j in range(1,N+1):mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j])N,M,Q=map(int,input().split())
mp=[[1100000000]*(M+2) for _ in range(N+2)]
for _ in range(M):u,v,w=map(int,input().split())w=min(mp[u][v],w)               #考虑重边,选最小权值那条mp[u][v]=wmp[v][u]=w
floyd()
for _ in range(Q):st,ed=map(int,input().split())if mp[st][ed]==1100000000:      #st无法到达edprint(-1)elif st==ed:                    #有可能兜一圈回到起点呢,所以要特判print(0)else:print(mp[st][ed])

2、路径(2021年初赛 lanqiaoOJ题号1460)

填空题

【题目描述】

小蓝的图由 2021 个结点组成,依次编号1至2021。对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条长度为 a 和 b 的最小公倍数的无向边相连。例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为75。

请计算,结点 1 和结点 2021 之间的最短路径长度是多少。

【常规的floyd】:运行时间长达30分钟!

from math import *
def lcm(x,y):return x//gcd(x,y)*y    #求最小公倍数
dp=[[int(0x3f3f3f3f3f3f3f3f) for _ in range(2022)] for _ in range(2022)]def floyd():global dpfor k in range(1,2022):for i in range(1,2022):for j in range(1,2022):dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])for i in range(1,2022):for j in range(1,2022):if abs(i-j)<=21:dp[i][j]=lcm(i,j)
floyd()
print(dp[1][2021])

【简化版floyd】

from math import *
def lcm(x,y):return x//gcd(x,y)*y    #求最小公倍数
dp=[[int(0x3f3f3f3f3f3f3f3f) for _ in range(2022)] for _ in range(2022)]def floyd():global dpfor k in range(1,2022):#for i in range(1,2022):for i in range(1,2):for j in range(1,2022):dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j])for i in range(1,2022):for j in range(1,2022):if abs(i-j)<=21:dp[i][j]=lcm(i,j)
floyd()
print(dp[1][2021])

我们只求点 1 到其他点的最短路就行!这实际上这变成了 Bellman-ford 算法。

【Bellman-ford更简洁的写法】

from math import *
def lcm(x,y):return x//gcd(x,y)*y    #求最小公倍数
dp=[int(0x3f3f3f3f3f3f3f3f)]*2022   #dp[i]:点i到点1的最短路径
d[1]=0
for i in range(1,2022):     #点ifor j in range(i+1,i+22):   #和i有边的点jif j>2021:breakdp[j]=min(dp[j],dp[i]+lcm(i,j))     #更新最短路
print(dp[2021])

以上,FLoyd算法的入门与应用

祝好

 


 

相关文章:

FLoyd算法的入门与应用

目录 一、前言 二、FLoyd算法 1、最短路问题 2、Floyd算法 3、Floyd的特点 4、Floyd算法思想&#xff1a;动态规划 三、例题 1、蓝桥公园&#xff08;lanqiaoOJ题号1121&#xff09; 2、路径&#xff08;2021年初赛 lanqiaoOJ题号1460&#xff09; 一、前言 本文主要…...

303. 区域和检索 - 数组不可变

303. 区域和检索 - 数组不可变 给定一个整数数组 nums&#xff0c;处理以下类型的多个查询: 计算索引 left 和 right &#xff08;包含 left 和 right&#xff09;之间的 nums 元素的 和 &#xff0c;其中 left < right 实现 NumArray 类&#xff1a; NumArray(int[] num…...

Spring Cloud融合Nacos配置加载优先级 | Spring Cloud 8

一、前言 Spring Cloud Alibaba Nacos Config 目前提供了三种配置能力从 Nacos 拉取相关的配置&#xff1a; A&#xff1a;通过内部相关规则(应用名、扩展名、profiles)自动生成相关的 Data Id 配置B&#xff1a;通过 spring.cloud.nacos.config.extension-configs的方式支持…...

LeetCode 236.二叉树的最近公共祖先

给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。百度百科中最近公共祖先的定义为&#xff1a;“对于有根树 T 的两个节点 p、q&#xff0c;最近公共祖先表示为一个节点 x&#xff0c;满足 x 是 p、q 的祖先且 x 的深度尽可能大&#xff08;一个节点也可以是它自己的祖…...

awk简单实例(持续更新中)

一 概述 awk命令是一种分析和处理文本文件的编程工具。它的功能非常强大&#xff0c;是Linux/Unix系统中最常用的过滤工具。 awk内建变量&#xff1a; NF 整个数据行(即$0)拥有的字段总数 NR 当前awk所处理的数据行的编号 $0 当前awk所处理的数据行 $1 数据行的第1个字段 $2 数…...

react动态路由组件的封装

react动态路由组件的封装 我这篇比较全面 首先下载包 npm i react-router-dom5 这里为什么要用5的版本为啥不用最新的&#xff0c;原因在于老版本跟新版本写法不一样 老版本 import { HashRouter, Route, Switch, Redirect } from react-router-dom;render() {return (<Ha…...

Vue项目中引入高德地图步骤详解

高德地图API官网&#xff1a;高德开放平台 | 高德地图API。 目录 一、案例效果 二、开发准备 1. 注册高德开放平台账号 2. 创建应用添加 key 值 三、项目中使用地图组件 1. npm 获取高德地图 API 2.在项目中新建 MapContainer.vue 文件&#xff0c;用作地图组件。 3.在…...

软件测试用例篇(2)

功能测试界面测试兼容性测试安全测试易用性测试性能测试 针对有需求的案例来设计测试用例:邮箱注册&#xff0c;部分测试用例 https://zay1xofb7z6.feishu.cn/mindnotes/bmncnKD5Ak6GSZl3PRlWDgF9z3g#mindmap 一)等价类: 场景需求:姓名长度是6-200位&#xff0c;那么如何进行设…...

leetcode题解-27. Remove Element

给你一个数组 nums 和一个值 val&#xff0c;你需要 原地 移除所有数值等于 val 的元素&#xff0c;并返回移除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须仅使用 O(1) 额外空间并 原地 修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面…...

【fly-iot飞凡物联】(4):在linux系统上搭建arduino环境,可以使用离线包,导入到arduino上即可。

目录前言1&#xff0c;关于2&#xff0c;然后就可以找到ESP32&#xff0c;ESP8266的主版3&#xff0c;方法2&#xff0c;github下载&#xff0c;然后手动添加到ide中吧4&#xff0c;总结前言 本文的原文连接是: https://blog.csdn.net/freewebsys/article/details/108971807 未…...

java实例解析类图中【关联、组合和聚合】的区别

总目录链接==>> AutoSAR入门和实战系列总目录 文章目录 聚合Composition聚合与组合的区别关联是两个独立类之间的关系,它通过它们的对象建立关联。关联可以是一对一、一对多、多对一、多对多。在面向对象的编程中,一个对象与另一个对象通信以使用该对象提供的功能和服…...

基于m-p条件查询代码生成

目录 起因 演示 使用 0.自定义注解 1.定义一个dto的条件查询类 2.调用主程序 效果图 小结 代码 注解 Dto类 完整代码 起因 最近两天一直写后台管理统计的增删改查(很少写增删改查&#xff0c;所以不是很熟练)&#xff0c;几乎每个表都要涉及到条件查询的业务&#xf…...

【LeetCode】带环链表两道题

第一题&#xff1a;环形链表 问题介绍 给你一个链表的头节点head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪next指针再次到达&#xff0c;则链表中存在环。为了表示给定链表中的环&#xff0c;评测系统内部使用整数pos 来表示链表…...

CSS奇思妙想之-利用CSS裁剪(clip-path)完成各种图形

在日常开发当中&#xff0c;如果想要开发多边形&#xff0c;一般都需要多个盒子或者伪元素的帮助&#xff0c;有没有一直办法能只使用一个盒子实现呢&#xff1f; 有的&#xff1a;css裁剪 clip-path介绍 css裁剪&#xff08;clip-path&#xff09;这个属性平时率非常低。但是…...

力扣每日一题刷题总结:哈希表篇

剑指 Offer II 033.变位词组 Medium 哈希表 变位词 2023/3/3 给定一个字符串数组 strs &#xff0c;将 变位词 组合在一起。 可以按任意顺序返回结果列表。 注意&#xff1a;若两个字符串中每个字符出现的次数都相同&#xff0c;则称它们互为变位词。 示例&#xff1a; 示例 1:…...

【Redis】redis大key和大value的危害,如何处理?

前序 还记得上次和同事一起去面试候选人时&#xff0c;同事提了一个问题&#xff1a;Redis的大key有什么危害&#xff1f;当时候选人主要作答的角度是一个key的value较大时的情况&#xff0c;比如&#xff1a; 内存不均&#xff1a;单value较大时&#xff0c;可能会导致节点之…...

Spring Boot:实现MyBatis动态创建表

在有些应用场景中&#xff0c;我们会有需要动态创建和操作表的需求。 比如因为单表数据存储量太大而采取分表存储的情况&#xff0c;又或者是按日期生成日志表存储系统日志等等。这个时候就需要我们动态的生成和操作数据库表了。 而我们都知道&#xff0c;以往我们使用MyBati…...

SpringBoot+Seata在多数据源和feign中的简单使用

SpringBootSeata简单使用 目录seata执行过程安装seata下载seata使用自定义配置文件,NACOS为注册中心结合springboot实现AT模式1.多数据源引入依赖bootstrap.yml配置在使用的方法上用GlobalTransactional注解调用接口正常时调用接口报错时回滚2.配合feignseata优缺点seata执行过…...

计算机网络中的原码、反码、补码

写在前面 原码、反码、补码是计算机组成原理中的概念&#xff0c;是计算机网络的基础知识之一。这些概念是为了处理二进制数的符号位而引入的&#xff0c;常用于计算机中的整数运算&#xff0c;也常用于数据存储和传输等领域。因此&#xff0c;了解和掌握这些概念对于理解计算机…...

七、Bean的实例化方式

Spring为Bean提供了多种实例化方式&#xff0c;通常包括4种方式。&#xff08;也就是说在Spring中为Bean对象的创建准备了多种方案&#xff0c;目的是&#xff1a;更加灵活&#xff09; 第一种&#xff1a;通过构造方法实例化第二种&#xff1a;通过简单工厂模式实例化第三种&…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

腾讯云V3签名

想要接入腾讯云的Api&#xff0c;必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口&#xff0c;但总是卡在签名这一步&#xff0c;最后放弃选择SDK&#xff0c;这次终于自己代码实现。 可能腾讯云翻新了接口文档&#xff0c;现在阅读起来&#xff0c;清晰了很多&…...