SpringBoot ES 聚合后多字段加减乘除
SpringBoot ES 聚合后多字段加减乘除
在SpringData Elasticsearch中,聚合统计的原理主要依赖于Elasticsearch本身的聚合框架。Elasticsearch提供了强大的聚合功能,使得你可以对文档进行各种计算和统计,从而得到有关数据集的有用信息。
Elasticsearch的聚合(Aggregation)是一种强大的数据分析和统计工具,它允许你对文档集合进行多层次、多维度的计算和分析。聚合的原理可以分为以下几个方面:
| 关键词 | 原理 |
|---|---|
| 桶(Buckets) | 桶是聚合的基本单元,它将文档分组到不同的集合中,这些集合称为桶。桶可以按照不同的标准进行分组,比如词条、范围、日期等。 |
| 度量(Metrics) | 除了桶,聚合还可以返回一些度量结果,如总和、平均值、最大值、最小值等。度量通常与桶结合使用,以提供更详细的统计信息。 |
| Pipeline Aggregations | Elasticsearch支持通过管道(pipeline)对聚合结果进行再处理。管道聚合(Pipeline Aggregations)允许你在已经聚合的结果上进行进一步的计算,例如计算平均值、求和等。 |
| 分布式计算 | Elasticsearch是一个分布式的搜索引擎,聚合的计算也是分布式的。当执行聚合查询时,Elasticsearch会将聚合任务分发到不同的分片上,然后将结果合并到一个全局结果中。 |
| 优化和缓存 | 为了提高性能,Elasticsearch会对聚合进行优化和缓存。在多次执行相同聚合查询时,Elasticsearch可能会缓存中间结果,以减少重复计算的开销。 |
| 脚本 | Elasticsearch支持使用脚本来进行聚合计算。脚本可以在聚合过程中对文档的字段进行定制的计算,从而实现更灵活的聚合操作。 |
import org.elasticsearch.script.Script;
import org.elasticsearch.script.ScriptType;
import org.elasticsearch.search.aggregations.Aggregation;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.ParsedStringTerms;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.aggregations.bucket.terms.TermsAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.AvgAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.MaxAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.MinAggregationBuilder;
import org.elasticsearch.search.aggregations.metrics.SumAggregationBuilder;
import org.jeecg.modules.mark.common.es.entity.AudioMarkInfo;
import org.junit.jupiter.api.Test;import java.util.Collections;
import java.util.List;import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.elasticsearch.core.ElasticsearchRestTemplate;
import org.springframework.data.elasticsearch.core.SearchHits;
import org.springframework.data.elasticsearch.core.mapping.IndexCoordinates;
import org.springframework.data.elasticsearch.core.query.NativeSearchQueryBuilder;@SpringBootTest
public class ElasticSearchTest {@Autowiredprivate ElasticsearchRestTemplate restTemplate;@Testpublic void count() {String indexName = "app_student_1";NativeSearchQueryBuilder query = new NativeSearchQueryBuilder();TermsAggregationBuilder group = AggregationBuilders.terms("group").field("id");// 多字段积 聚合求 和Script script1 = new Script(ScriptType.INLINE, "painless","doc['age'].value * doc['score'].value", Collections.emptyMap());SumAggregationBuilder sum = AggregationBuilders.sum("sum").script(script1);// 多字段差 聚合求 平均数Script script2 = new Script(ScriptType.INLINE, "painless","doc['age'].value / doc['score'].value", Collections.emptyMap());AvgAggregationBuilder avg = AggregationBuilders.avg("avg").script(script2);// 多字段和 聚合求 最大值Script script3 = new Script(ScriptType.INLINE, "painless","doc['age'].value + doc['score'].value", Collections.emptyMap());MaxAggregationBuilder max = AggregationBuilders.max("max").script(script3);// 多字段商 聚合求 最小值Script script4 = new Script(ScriptType.INLINE, "painless","doc['age'].value + doc['score'].value + doc['mathScore'].value", Collections.emptyMap());MinAggregationBuilder min = AggregationBuilders.min("min").script(script4);group.subAggregation(sum);group.subAggregation(avg);group.subAggregation(max);group.subAggregation(min);SearchHits<AudioMarkInfo> search = restTemplate.search(query.build(), AudioMarkInfo.class,IndexCoordinates.of(indexName));Aggregations aggregations = search.getAggregations();ParsedStringTerms terms = aggregations.get("group");List<? extends Terms.Bucket> buckets = terms.getBuckets();for (Terms.Bucket bucket : buckets) {String id = bucket.getKeyAsString();long count = bucket.getDocCount();for (Aggregation list : bucket.getAggregations().asList()) {// TODO:}}}}相关文章:
SpringBoot ES 聚合后多字段加减乘除
SpringBoot ES 聚合后多字段加减乘除 在SpringData Elasticsearch中,聚合统计的原理主要依赖于Elasticsearch本身的聚合框架。Elasticsearch提供了强大的聚合功能,使得你可以对文档进行各种计算和统计,从而得到有关数据集的有用信息。 Elast…...
React16源码: React中requestCurrentTime和expirationTime的源码实现补充
requestCurrentTime 1 )概述 关于 currentTime,在计算 expirationTime 和其他的一些地方都会用到 从它的名义上来讲,应等于performance.now() 或者 Date.now() 就是指定的当前时间在react整体设计当中,它是有一些特定的用处和一些…...
【论文阅读】Deep Graph Contrastive Representation Learning
目录 0、基本信息1、研究动机2、创新点3、方法论3.1、整体框架及算法流程3.2、Corruption函数的具体实现3.2.1、删除边(RE)3.2.2、特征掩盖(MF) 3.3、[编码器](https://blog.csdn.net/qq_44426403/article/details/135443921)的设…...
设计模式-简单工厂
设计模式-简单工厂 简单工厂模式是一个集中管理对象创建,并根据条件生成所需类型对象的设计模式,有助于提高代码的复用性和维护性,但可能会导致工厂类过于复杂且违反开闭原则。 抽象提取理论: 封装对象创建过程解耦客户端与产品…...
Django ORM 中的单表查询 API(1)
在 Django 中,对象关系映射(ORM)提供了一种功能强大、表现力丰富的数据库交互方式。ORM 允许开发人员使用高级 Python 代码执行数据库查询,从而更轻松地处理数据库实体。 下面,我们将探讨 Django ORM 中单表查询 API …...
电子雨html代码
废话不多说下面是代码: <!DOCTYPE html><html lang"en"><head><meta charset"UTF-8"><title>Code</title><style>body{margin: 0;overflow: hidden;}</style></head><body><c…...
xadmin基于Django的后台管理系统安装与使用
xadmin是基于Django的后台管理系统 官网:http://sshwsfc.github.io/xadmin/ github地址:https://github.com/sshwsfc/xadmin 安装方式 pip安装 pip install xadmin在setting配置中添加: INSTALLED_APPS [xadmin,crispy_forms, ]在urls.py…...
[go语言]输入输出
目录 知识结构 输入 1.Scan 编辑 2.Scanf 3.Scanln 4.os.Stdin --标准输入,从键盘输入 输出 1.Print 2.Printf 3.Println 知识结构 输入 为了展示集中输入的区别,将直接进行代码演示。 三者区别的结论:Scanf格式化输入&#x…...
【SpringBoot系列】AOP详解
🤵♂️ 个人主页:@香菜的个人主页,加 ischongxin ,备注csdn ✍🏻作者简介:csdn 认证博客专家,游戏开发领域优质创作者,华为云享专家,2021年度华为云年度十佳博主 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收…...
openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c
文章目录 openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c概述笔记END openssl3.2 - 官方demo学习 - signature - rsa_pss_hash.c 概述 对私钥对明文做签名(摘要算法为SHA256) 用公钥对密文做验签(摘要算法为SHA256) 笔记 /*! \file rsa_pss_hash.c \note openss…...
Redis相关知识点
1.什么是Redis Redis (REmote DIctionary Server) 是用 C 语言开发的一个开源的高性能键值对(key-value)数据库,它支持网络,可基于内存亦可持久化,并提供多种语言的API。Redis具有高效性、原子性、支持多种数据结构、…...
嵌入式开发--STM32G4系列片上FLASH的读写
这个玩意吧,说起来很简单,就是几行代码的事,但楞是折腾了我大半天时间才搞定。原因后面说,先看代码吧: 读操作 读操作很简单,以32位方式读取的时候是这样的: data *(__IO uint32_t *)(0x080…...
嵌入式-Stm32-江科大基于标准库的GPIO的八种模式
文章目录 一:GPIO输入输出原理二:GPIO基本结构三:GPIO位结构四:GPIO的八种模式道友:相信别人,更要一百倍地相信自己。 (推荐先看文章:《 嵌入式-32单片机-GPIO推挽输出和开漏输出》…...
2024年1月17日Arxiv热门NLP大模型论文:THE FAISS LIBRARY
Meta革新搜索技术!提出Faiss库引领向量数据库性能飞跃 引言:向量数据库的兴起与发展 随着人工智能应用的迅速增长,需要存储和索引的嵌入向量(embeddings)数量也在急剧增加。嵌入向量是由神经网络生成的向量表示&…...
深度解析JVM类加载器与双亲委派模型
概述 Java虚拟机(JVM)是Java程序运行的核心,其中类加载器和双亲委派模型是JVM的重要组成部分。本文将深入讨论这两个概念,并解释它们在实际开发中的应用。 1. 什么是类加载器? 类加载器是JVM的一部分,负…...
前端下载文件流,设置返回值类型responseType:‘blob‘无效的问题
前言: 本是一个非常简单的请求,即是下载文件。通常的做法如下: 1.前端通过Vue Axios向后端请求,同时在请求中设置响应体为Blob格式。 2.后端相应前端的请求,同时返回Blob格式的文件给到前端(如果没有步骤…...
C++核心编程——类和对象(一)
本专栏记录C学习过程包括C基础以及数据结构和算法,其中第一部分计划时间一个月,主要跟着黑马视频教程,学习路线如下,不定时更新,欢迎关注。 当前章节处于: ---------第1阶段-C基础入门 ---------第2阶段实战…...
脱模斜度是什么意思,为什么要有脱模斜度,没有斜度不行吗?
问题描述:脱模斜度是什么意思,为什么要有脱模斜度,没有斜度不行吗? 问题解答: 脱模斜度是指在模具中的零件在脱模(从模具中取出)过程中相对于模具开合方向的倾斜程度。在模具设计和制造中&…...
【现代密码学】笔记9-10.3-- 公钥(非对称加密)、混合加密理论《introduction to modern cryphtography》
【现代密码学】笔记9-10.3-- 公钥(非对称加密)、混合加密理论《introduction to modern cryphtography》 写在最前面8.1 公钥加密理论随机预言机模型(Random Oracle Model,ROM) 写在最前面 主要在 哈工大密码学课程 张…...
牛客-寻找第K大、LeetCode215. 数组中的第K个最大元素【中等】
文章目录 前言牛客-寻找第K大、LeetCode215. 数组中的第K个最大元素【中等】题目及类型思路思路1:大顶堆思路2:快排二分随机基准点 前言 博主所有博客文件目录索引:博客目录索引(持续更新) 牛客-寻找第K大、LeetCode215. 数组中的第K个最大元…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
