【问题记录】AttributeError: module ‘numpy‘ has no attribute ‘bool‘
服务器上运行代码报错:
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the future
np.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the futurenp.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the futurenp.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the futurenp.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
Traceback (most recent call last):
File “main.py”, line 75, in
main()
File “main.py”, line 39, in main
runner.train()
File “/root/CLRNet-main/CLRNet-main/clrnet/engine/runner.py”, line 92, in train
self.train_epoch(epoch, train_loader)
File “/root/CLRNet-main/CLRNet-main/clrnet/engine/runner.py”, line 54, in train_epoch
for i, data in enumerate(train_loader):
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/dataloader.py”, line 517, in next
data = self._next_data()
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/dataloader.py”, line 1199, in _next_data
return self._process_data(data)
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/dataloader.py”, line 1225, in process_data
data.reraise()
File "/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils.py", line 429, in reraise
raise self.exc_type(msg)
AttributeError: Caught AttributeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/utils/worker.py", line 202, in worker_loop
data = fetcher.fetch(index)
File "/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/opt/conda/envs/clrnet/lib/python3.8/site-packages/torch/utils/data/utils/fetch.py", line 44, in
data = [self.dataset[idx] for idx in possibly_batched_index]
File “/root/CLRNet-main/CLRNet-main/clrnet/datasets/base_dataset.py”, line 61, in getitem
sample = self.processes(sample)
File “/root/CLRNet-main/CLRNet-main/clrnet/datasets/process/process.py”, line 37, in call
data = t(data)
File “/root/CLRNet-main/CLRNet-main/clrnet/datasets/process/generate_lane_line.py”, line 188, in call
img, line_strings, seg = self.transform(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 2008, in call
return self.augment(*args, **kwargs)
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 1979, in augment
batch_aug = self.augment_batch(batch, hooks=hooks)
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 641, in augment_batch
batch_inaug = self.augment_batch(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 3124, in augment_batch
batch = self[index].augment_batch(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 641, in augment_batch
batch_inaug = self.augment_batch(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 3633, in augment_batch
batch_sub = augmenters.augment_batch(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 641, in augment_batch
batch_inaug = self.augment_batch(
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 3395, in augment_batch
augmenter_active = self._get_augmenter_active(batch.nb_rows,
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py”, line 3368, in _get_augmenter_active
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
File “/opt/conda/envs/clrnet/lib/python3.8/site-packages/numpy/init.py”, line 305, in getattr
raise AttributeError(former_attrs[attr])
AttributeError: module ‘numpy’ has no attribute ‘bool’.
np.boolwas a deprecated alias for the builtinbool. To avoid this error in existing code, useboolby itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, usenp.bool_here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the futurenp.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
/opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the futurenp.boolwill be defined as the corresponding NumPy scalar.
augmenter_active = np.zeros((nb_rows, len(self)), dtype=np.bool)
报错一长串,就是说:这个错误是由于 numpy 库的一个变化导致的,具体来说,它指出 np.bool 已经被弃用,而应该使用内置的 bool 类型。
要解决这个问题,你可以尝试在你的代码中找到并替换所有的 np.bool,将其替换为 bool。你可以使用文本编辑器的查找和替换功能来执行这个操作。
但是我现在文件很多,一个个去改变形式不现实,可以用更换numpy版本。
numpy在1.24版本中放弃了bool的使用,将代码中np.bool改为np.bool_
或者将numpy版本降为1.23.1也可。(1.23.2也可以)
pip install numpy==1.23.1
相关文章:
【问题记录】AttributeError: module ‘numpy‘ has no attribute ‘bool‘
服务器上运行代码报错: /opt/conda/envs/clrnet/lib/python3.8/site-packages/imgaug-0.4.0-py3.8.egg/imgaug/augmenters/meta.py:3368: FutureWarning: In the future np.bool will be defined as the corresponding NumPy scalar. augmenter_active np.zeros((n…...
WordPress企业模板
首页大图wordpress外贸企业模板 橙色的wordpress企业模板 演示 https://www.zhanyes.com/waimao/6250.html...
Intel Quartus II IP之DP1.4 工程的创建与使用
前述: Win10电脑安装了Quartus 21.4,这可以满足绝大多数工程,特别是对于简单调用fifo/ram等的工程,但是想要学习Quartus的HDMI/DP等高速接口类IP,首先需要创建HDMI/DP IP的设计demo工程,此时还需要安装Ecl…...
k8s集群环境搭建以及插件安装
前置条件 终端工具MobaXterm很好用。 1、虚拟机三台(ip按自己的网络环境相应配置)(master/node) 节点ipk8s-master192.168.200.150k8s-node1192.168.200.151k8s-node2192.168.200.152 2、关闭防火墙(master/node) systemctl stop firewalld systemc…...
面试的那些事儿
先从面试来说 假如你是网申,你的简历必然会经过HR的筛选,一张简历HR可能也就花费10秒钟看一下,然后HR 就会决定你这一关是Fail还是Pass。 假如你是内推,如果你的简历没有什么优势的话,就算是内推你的人再用心&#x…...
ffmpeg音视频解码
ffmpeg音视频解码 一.编译ffmpeg1.安装vmware虚拟机2.vmware虚拟机安装linux操作系统3.安装ftp和fshell软件4.在Ubuntu(Linux)中编译Android平台的FFmpeg( arm和x86 )5.解压FFmpeg6.Android编译脚本(1)修改…...
uniapp uni.chooseLocation调用走失败那里,错误码:112
问题:我配置了百度上所有能配置的,一直调用不成功,如下图配置的 1:第一个 配置 代码: "permission": {"scope.userLocation": {"desc": "你的位置信息将用于小程序位置接口的效果展示"}…...
第一次开发基于SpringBoot的Java应用
第一次开发基于SpringBoot的Java应用 一、 方式1:IDEA创建New Project Spring Boot官方文档的Getting Started1、IDEA创建New Project2、Spring Boot官方文档的Getting Started2.1 Creating the POM (实际是,更新pom.xml)2.2 Add…...
回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测
回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测 目录 回归预测 | Matlab实现MSADBO-CNN-LSTM基于改进蜣螂算法优化卷积神经网络-长短期记忆神经网络多特征回归预测预测效果基本描述程序设计参考资料 预测效果 基本描…...
数据结构--排序
参考【算法】排序算法之希尔排序 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/122632213 1. 排序的定义 2. 插入排序 2.1 直接插入排序 在插入第i(i>1)个记录时,前面的i-1个记录已经排好序 void insertSort(int r[],int n) {for(int i2;i<…...
Androidmanifest文件加固和对抗
前言 恶意软件为了不让我们很容易反编译一个apk,会对androidmanifest文件进行魔改加固,本文探索androidmanifest加固的常见手法以及对抗方法。这里提供一个恶意样本的androidmanifest.xml文件,我们学完之后可以动手实践。 1、Androidmanife…...
openssl3.2 - 官方demo学习 - cms - cms_denc.c
文章目录 openssl3.2 - 官方demo学习 - cms - cms_denc.c概述笔记END openssl3.2 - 官方demo学习 - cms - cms_denc.c 概述 将CMS数据结构写入PEM文件, 并将分离后的加密数据单独写到数据文件. 笔记 /*! \file cms_denc.c * \note openssl3.2 - 官方demo学习 - cms - cms_d…...
【Linux 命令】tree 对目录进行树形展示
目录 1、tree 命令功能展示 2、tree 命令安装 3、tree 命令语法及其参数功能 4、终止 tree 展开树命令 1、tree 命令功能展示 在 Linux 中,我们使用 ll 命令对目录的展示并不太方便我们查看,不太清晰明了,所以我们可以使用 tree 命令以…...
掌握Spring MVC拦截器整合技巧,实现灵活的请求处理与权限控制!
拦截器 1.1 拦截器概念1.2 拦截器入门案例1.2.1 环境准备1.2.2 拦截器开发步骤1:创建拦截器类步骤2:配置拦截器类步骤3:SpringMVC添加SpringMvcSupport包扫描步骤4:运行程序测试步骤5:修改拦截器拦截规则步骤6:简化SpringMvcSupport的编写 1.3 拦截器参数1.3.1 前置处理方法1.3…...
使用xbindkeys设置鼠标侧键
1.安装如下包 sudo apt install xbindkeys xautomation 2.生成配置文件 xbindkeys --defaults > $HOME/.xbindkeysrc 3.确定侧键键号 在终端执行下面的代码: xev | grep button 此时会出现如下窗口,将鼠标指针移动到这个窗口上: 单…...
跨站点请求伪造攻击 - Cross Site Request Forgery (CSRF)
什么是CSRF 最好理解CSRF攻击的方式是看一个具体的例子。 假设你的银行网站提供一个表单,允许当前登录用户将钱转账到另一个银行账户。例如,转账表单可能如下所示: <form method="post"action="/transfer"> <...
PLAN B KRYPTO ASSETS GMBH CO. KG 普兰资产管理公司
引领加密技术不断演进 PLAN B KRYPTO ASSETS普兰资产管理以其独创的「Trident Strategy三叉戟模型」技术为基础,持续推动加密技术的发展,打造 Schutz(舒茨盾) AI 金融隐私匿名公链。致力于提供高效的技术服务,基于机构…...
java接口和多态
1.接口 1.1黑马信息管理系统集合改进 (应用) 使用数组容器的弊端 容器长度是固定的,不能根据添加功能自动增长 没有提供用于赠删改查的方法 优化步骤 创建新的StudentDao类,OtherStudentDao 创建ArrayList集合容器对象 OtherStudentDao中的方法声明…...
C# 图解教程 第5版 —— 第22章 命名空间和程序集
文章目录 22.1 引用其他程序集22.2 命名空间22.2.1 命名空间名称22.2.2 命名空间的补充22.2.3 命名空间跨文件伸展22.2.4 嵌套命名空间 22.3 using 指令22.3.1 using 命名空间指令22.3.2 using 别名指令22.3.3 using static 指令 22.4 程序集的结构22.5 程序集标识符22.6 强命名…...
【Maven】008-Maven 私服搭建与使用
【Maven】008-Maven 私服搭建与使用 文章目录 【Maven】008-Maven 私服搭建与使用一、概述1、简介2、建立私服后依赖查找和下载逻辑第一步:请求本地仓库第二步:请求 Maven 私服第三步:请求外部远程仓库(远程中央仓库等)…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
