滑动窗口经典入门题-——长度最小子数组
文章目录
- 算法原理
- 题目解析
- 暴力枚举法的代码
- 优化
- 第一步初始化
- 第二步right右移
- 第三步left右移
- 滑动窗口法的代码
算法原理
滑动窗口是一种在序列(例如数组或链表)上解决问题的算法模式。它通常用于解决子数组或子字符串的问题,其中滑动窗口表示一个范围,这个范围在序列上移动,以便找到满足特定条件的子数组或子字符串。
算法的基本思想是维护两个指针,通常是左右两个指针,表示滑动窗口的左右边界。通过调整这两个指针,可以滑动窗口在序列上移动。在每个窗口位置,都可以根据问题的要求进行处理,比如计算窗口内的和、最大值、最小值,或者检测满足某些条件的子数组或子字符串等。
滑动窗口算法的一般步骤如下:
初始化左右指针: 将左指针和右指针初始化为序列的起始位置。
滑动窗口: 移动右指针以扩大窗口,或移动左指针以缩小窗口,直到满足问题的条件。
处理窗口数据: 在每个窗口位置,根据问题的要求处理窗口内的数据,比如计算窗口内的和、最大值、最小值,或者检测满足某些条件的子数组或子字符串。
更新结果: 根据问题的要求更新结果。
重复: 重复2-4步骤,直到右指针到达序列的末尾。
滑动窗口算法通常能够在线性时间内解决一些与子数组或子字符串相关的问题,因为每个元素至多被访问两次(一次由左指针,一次由右指针)。这种算法的时间复杂度通常是 O(N),其中 N 是序列的长度。
实际应用中,滑动窗口算法可以解决一系列问题,如最大子数组和、最小覆盖子串、最长无重复字符子串等。
题目解析
废话不多说先上题目链接leetcode—长度最小子数组
那么接下来我们一起解析一下例题如下图

首先最重要的肯定是读懂题目,题目意思其实也很容易读懂意思就是给我们一个数字target和一个数组,要求在这个数组中找到一个必须是连续的子数组并且这个子数组每个元素加起来>=target并从找到的这些数组中取一个最短的数组那么炸一看可能会感觉有些茫然,但是学习算法我们要记住一个步骤就是面对一个题目的时候先想一下如何暴力的把他求出来,那么很简单那就是找到所有的子数组并从这些子数组中找到和>=target的数组之后取得最小值那么我们把暴力的方法先写出来代码如下
暴力枚举法的代码
class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {int ans=0x9f9f9f;for(int i=0;i<nums.size();i++){int t=0;for(int j=i;j<nums.size();j++){t+=nums[j];if(i==j){if(t>=target){ans=min(ans,j-i+1);break;}}if(t>=target){ans=min(ans,j-i+1);break;}}}if(ans==0x9f9f9f){return 0;}return ans;}
};

由于力扣的后台测试数据比较小所以这个暴力的解法也可以过但是我们可以清楚的看到这个算法的时间复杂度达到了O(n^2)因此这个时间负责度还是比较高的因此我们有没有更简单的办法呢?
优化
使用滑动窗口进行优化,
在这道题目中我们可以看到两个重要信息
1、子数组必须是连续的
2、子数组的和需要>=target
那么我们可以想一下我们可以使用两个指针一个是left一个是right当left和right之间的元素和小于target的时候就让right一直向右移动,当right和left之间的元素大于等于target的时候我们更新一下此时的长度是否为最短,然后再让left左移查看此时right和left的元素之和是否大于等于target如果是就继续上一步操作即继续更新我们的最短长度,一直到right和left之间的数据小于target为止之后再让right指针右移即可。
我给大家举出一个例子说明一下。
第一步初始化

第二步right右移

此时我们可以发现right和left之间的元素和超过了target因此我们与目标值进行比较取得较小的那个然后让left右移之后再进行查看此时right和left之间的元素和是否大于等于target。
第三步left右移

此时我们右移后发现right和left之间的元素和小于target因此right继续右移然后后续一直重复这个操作即可
滑动窗口法的代码
class Solution {
public:int minSubArrayLen(int target, vector<int>& nums) {int left=0;int right=0;int sum=nums[0];int ansmin=100010;while(right<nums.size()&&left<nums.size()){if(sum>=target){ansmin=min(right-left+1,ansmin);sum-=nums[left];left++;}else{right++;if(right<nums.size())sum+=nums[right];else break;}}if(ansmin==100010){return 0;}return ansmin;}
};

我们可以从用时分布图清楚的看到我们的时间效率有了很大的提升。
相关文章:
滑动窗口经典入门题-——长度最小子数组
文章目录 算法原理题目解析暴力枚举法的代码优化第一步初始化第二步right右移第三步left右移 滑动窗口法的代码 算法原理 滑动窗口是一种在序列(例如数组或链表)上解决问题的算法模式。它通常用于解决子数组或子字符串的问题,其中滑动窗口表示…...
AcGeMatrix2d::alignCoordSys一种实现方式
问题描述 此处为了简化问题,在2维空间中处理,按以下方式调用,AcGeMatrix2d::alignCoordSys是如何求出一个矩阵的呢,这里提供一个实现思路(但效率不保证好) AcGeMatrix2d matTrans AcGeMatrix2d::alignCo…...
InternLM第5次课笔记
LMDeploy 大模型量化部署实践 1 大模型部署背景 2 LMDeploy简介 3 动手实践环节 https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md 3...
2018年认证杯SPSSPRO杯数学建模D题(第一阶段)投篮的最佳出手点全过程文档及程序
2018年认证杯SPSSPRO杯数学建模 对于投篮最佳出手点的探究 D题 投篮的最佳出手点 原题再现: 影响投篮命中率的因素不仅仅有出手角度、球感、出手速度,还有出手点的选择。规范的投篮动作包含两膝微屈、重心落在两脚掌上、下肢蹬地发力、身体随之向前上…...
使用pdfbox 为 PDF 增加水印
使用pdfbox 为 PDF增加水印https://www.jylt.cc/#/detail?activityIndex2&idbd410851b0a72dad3105f9d50787f914 引入依赖 <dependency><groupId>org.apache.pdfbox</groupId><artifactId>pdfbox</artifactId><version>3.0.1</ve…...
6.【CPP】Date类的实现
Date.h #pragma once using namespace std; #include<iostream>class Date {friend ostream& operator<<(ostream& out, const Date& d);friend istream& operator>>(istream& in, Date& d); public://构造函数会被频繁调用,放在类…...
三角形任意一外角大于不相邻的任意一内角
一.代数证明 ∵ 对与△ A C B 中 ∠ c 外接三角形是 ∠ B C D ∵对与△ACB中∠c外接三角形是∠BCD ∵对与△ACB中∠c外接三角形是∠BCD ∴ ∠ B C D π − ∠ C ∴∠BCD\pi-∠C ∴∠BCDπ−∠C ∵ ∠ A ∠ B ∠ C π ∵∠A∠B∠C\pi ∵∠A∠B∠Cπ ∴ ∠ B C D ∠ A ∠…...
【Spring Boot 3】【Redis】集成Lettuce
【Spring Boot 3】【Redis】集成Lettuce 背景介绍开发环境开发步骤及源码工程目录结构总结背景 软件开发是一门实践性科学,对大多数人来说,学习一种新技术不是一开始就去深究其原理,而是先从做出一个可工作的DEMO入手。但在我个人学习和工作经历中,每次学习新技术总是要花…...
【SQL注入】SQLMAP v1.7.11.1 汉化版
下载链接 【SQL注入】SQLMAP v1.7.11.1 汉化版 简介 SQLMAP是一款开源的自动化SQL注入工具,用于扫描和利用Web应用程序中的SQL注入漏洞。它在安全测试领域被广泛应用,可用于检测和利用SQL注入漏洞,以验证应用程序的安全性。 SQL注入是一种…...
时序预测 | MATLAB实现GRNN广义回归神经网络时间序列未来多步预测(程序含详细预测步骤)
时序预测 | MATLAB实现GRNN广义回归神经网络时间序列未来多步预测(程序含详细预测步骤) 目录 时序预测 | MATLAB实现GRNN广义回归神经网络时间序列未来多步预测(程序含详细预测步骤)预测效果基本介绍程序设计参考资料预测效果 基本介绍 MATLAB实现GRNN广义回归神经网络时间序列…...
长期戴耳机的危害有哪些?戴哪种耳机不伤耳朵听力?
长期佩戴耳机可能会出现听力下降、耳道感染等危害。 听力下降:长时间戴耳机可能会导致耳道内的声音过大,容易对耳膜造成一定的刺激,容易出现听力下降的情况。 耳道感染:长时间戴耳机,耳道长期处于封闭潮湿的情况下&a…...
C++中的预处理
一.预定义符号 1.__FILE__进行编译的源文件 2.__LINE__文件当前的行号 3.__DATE__文件被编译的日期 4.__TIME文件被编译的时间 5.__STDC__如果编译器遵循ANSIC,其值为1,否则未定义 二.#define 基本语法:#define 名字 内容 eg.define M 1 经#define定义的常量时不经过…...
flink 最后一个窗口一直没有新数据,窗口不关闭问题
flink 最后一个窗口一直没有新数据,窗口不关闭问题 自定义实现 WatermarkStrategy接口 自定义实现 WatermarkStrategy接口 窗口类型:滚动窗口 代码: public static class WatermarkDemoFunction implements WatermarkStrategy<JSONObject…...
mybatis----小细节
1、起别名 在MyBatis中,<typeAliases>元素用于定义类型别名,它可以将Java类名映射为一个更简短的别名,这样在映射文件中可以直接使用别名而不需要完整的类名。 下面是一个示例: 在mybatis核心配置文件中配置typeAliases标…...
解密Oracle数据库引擎:揭开数据存储的神秘面纱
目录 1、介绍Oracle数据库引擎 1.1 什么是Oracle数据库引擎 1.2 Oracle数据库引擎的作用和功能 1.3 Oracle数据库引擎的历史和发展 2、Oracle数据库引擎的体系结构 2.1 Oracle数据库实例的组成部分 2.2 Oracle数据库引擎的层次结构 2.3 Oracle数据库引擎的关键组件 3、…...
「HDLBits题解」Karnaugh Map to Circuit
本专栏的目的是分享可以通过HDLBits仿真的Verilog代码 以提供参考 各位可同时参考我的代码和官方题解代码 或许会有所收益 相关资料:卡诺图化简法-CSDN博客 题目链接:Kmap1 - HDLBits module top_module(input a,input b,input c,output out );assig…...
由于找不到d3dcompiler_43.dll缺失,无法打开软件的解决方法分享
d3dcompiler43.dll是什么文件?为什么会出现丢失的情况?又该如何解决呢?本文将详细介绍d3dcompiler43.dll的作用和影响,并提供6个有效的解决方法。 一、d3dcompiler43.dll是什么文件? d3dcompiler43.dll是DirectX SDK…...
现阶段Python和Java哪个更吃香?
现阶段Python和Java哪个更吃香? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「Java的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&…...
基于DNA的密码学和隐写术综述
摘要 本文全面调研了不同的脱氧核糖核酸(DNA)-基于密码学和隐写术技术。基于DNA的密码学是一个新兴领域,利用DNA分子的大规模并行性和巨大的存储容量来编码和解码信息。近年来,由于其相对传统密码学方法的潜在优势,如高存储容量、低错误率和对环境因素的抗性,该领域引起…...
【linux 多线程并发】多线程的控制,挂起线程暂停运行,直到唤醒线程,取消线程运行,可以设置合适的取消点属性避免不安全点被中止
线程运行控制 专栏内容: 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构,以及如何实现多机的数据库节点的多读多写,与传统主备,MPP的区别,技术难点的分析,数据元数据同步,多主节点的情况…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...
rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
深度解析云存储:概念、架构与应用实践
在数据爆炸式增长的时代,传统本地存储因容量限制、管理复杂等问题,已难以满足企业和个人的需求。云存储凭借灵活扩展、便捷访问等特性,成为数据存储领域的主流解决方案。从个人照片备份到企业核心数据管理,云存储正重塑数据存储与…...
C#最佳实践:为何优先使用as或is而非强制转换
C#最佳实践:为何优先使用as或is而非强制转换 在 C# 的编程世界里,类型转换是我们经常会遇到的操作。就像在现实生活中,我们可能需要把不同形状的物品重新整理归类一样,在代码里,我们也常常需要将一个数据类型转换为另…...
