当前位置: 首页 > news >正文

含并行连结的网络(GoogLeNet)

目录

1.GoogLeNet

2.代码


1.GoogLeNet

inception不改变高宽,只改变通道数。GoogLeNet也大量使用1*1卷积,把它当作全连接用。

    

    

V3耗内存比较多,计算比较慢,但是精度比较准确。

2.代码

import torch 
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l"""inceeption 块"""
class Unception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self,in_channels,c1,c2,c3,c4,**kwargs):super(Inception,self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1=nn.Conv2d(in_channels,c1,kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1=nn.Conv2d(in_channels,c2[0],kernel_size=1)self.p2_2=nn.Conv2d(c2[0],c2[1],kernel_size=3,padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1=nn.Conv2d(in_channels,c3[0],kernel_size=1)self.p2_1=nn.Conv2d(c3[0],c3[1],kernel_size=5,padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1=nn.MaxPool2d(kernel_size=3,stride=1,padding=1)self.p4_2=nn.Conv2d(in_channels,c4,kernel_size=1)def forward(self,x):p1=F.relu(self.p1_1(x))p2=F.relu(self.p2_2(F.relu(self.p2_1(x))))p3=F.relu(self.p3_2(F.relu(self.p3_1(x))))p4=F.relu(self.p4_2(self.p4_1(x)))return torch.cat((p1,p2,p3,p4),dim=1)#批量大小的维度是0,通道数的维度是1,所以在输出通道的维度上叠加起来。#为什么GoogLeNet这个网络如此有效呢? 首先我们考虑一下滤波器(filter)的组合,它们可以用
#各种滤波器尺寸探索图像,这意味着不同大小的滤波器可以有效地识别不同范围的图像细节。 同时,
#我们可以为不同的滤波器分配不同数量的参数。"""GoogLeNet模型"""
#逐一实现GoogLeNet的每个模块。第一个模块使用64个通道、7*7卷积层。
b1=nn.Sequential(nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),#图片大小减半nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))#图片大小减半#第二个模块使用两个卷积层:第一个卷积层是64个通道、1*1卷积层;第二个卷积层使用将通道数量
#增加三倍的3*3卷积层。 这对应于Inception块中的第二条路径。
b2=nn.Sequential(nn.Conv2d(64,64,kernel_size=1),nn.ReLU(),nn.Conv2d(64,192,kernel_size=3,padding=1)nn.ReLU(),nn.MaxPool2d(kernel_size=3,stride=2,padding=1))#第三个模块串联两个完整的Inception块。
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))#第四模块更加复杂, 它串联了5个Inception块
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),#输入的大小为第3模块最后输出的4条道路的通道数加起来Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))#第五模块包含两个Inception块。 其中每条路径通道数的分配思路和第三、第四模块中的一致,
#只是在具体数值上有所不同。第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均汇聚层,
#将每个通道的高和宽变成1。 最后我们将输出变成二维数组,再接上一个输出个数为标签类别数的
#全连接层。
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))#GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。 为了使Fashion-MNIST上
#的训练短小精悍,我们将输入的高和宽从224降到96,这简化了计算。下面演示各个模块输出
#的形状变化。
X = torch.rand(size=(1, 1, 96, 96))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
"""结果输出:
Sequential output shape:     torch.Size([1, 64, 24, 24])
Sequential output shape:     torch.Size([1, 192, 12, 12])
Sequential output shape:     torch.Size([1, 480, 6, 6])
Sequential output shape:     torch.Size([1, 832, 3, 3])
Sequential output shape:     torch.Size([1, 1024])
Linear output shape:         torch.Size([1, 10])"""""" 训练模型"""
#使用Fashion-MNIST数据集来训练我们的模型。在训练之前,我们将图片转换为96*96分辨率。
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
"""结果输出:
loss 0.262, train acc 0.900, test acc 0.886
3265.5 examples/sec on cuda:0"""

  • Inception块相当于一个有4条路径的子网络。它通过不同窗口形状的卷积层和最大汇聚层来并行抽取信息,并使用1×1卷积层减少每像素级别上的通道维数从而降低模型复杂度。

  • GoogLeNet将多个设计精细的Inception块与其他层(卷积层、全连接层)串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。

  • GoogLeNet和它的后继者们一度是ImageNet上最有效的模型之一:它以较低的计算复杂度提供了类似的测试精度。

相关文章:

含并行连结的网络(GoogLeNet)

目录 1.GoogLeNet 2.代码 1.GoogLeNet inception不改变高宽,只改变通道数。GoogLeNet也大量使用1*1卷积,把它当作全连接用。 V3耗内存比较多,计算比较慢,但是精度比较准确。 2.代码 import torch from torch import nn from t…...

计算机网络(第六版)复习提纲3

2.3 物理层下面的传输媒体 传输媒体是数据传输系统中在发送器和接收器之间的物理通道,有导引型传输媒体(有线)和非导引型传输媒体(无线) 1.双绞线:两条铜线绞合,以减少干扰,绞合度越…...

怿星科技测试实验室获CNAS实验室认可,汽车以太网检测能力达国际标准

2023年12月27日,上海怿星电子科技有限公司测试实验室(下称:EPT LABS)通过CNAS实验室认可批准,并于2024年1月5日正式取得CNAS实验室认可证书(注册号CNAS L19826),标志着怿星科技的实验…...

GORM 介绍及快速入门

GORM 介绍及快速入门 前言 GORM 是一个用 GoLang 语言编写的 ORM(对象关系映射)库。它被设计为开发者友好的方式来进行数据库操作。GORM 提供了一种高级的 API 来处理数据库的 CRUD(创建、读取、更新、删除)操作,它支…...

Scrcpy:掌握你的Android设备

Scrcpy:掌握你的Android设备 本文将介绍Scrcpy工具,它是一种强大的安卓设备控制工具,可以实现屏幕镜像、操作控制等功能。我们将探讨Scrcpy的基本原理和工作方式,并介绍如何使用Scrcpy连接和控制安卓设备。此外,我们还…...

[9, 8, 7, 6][1,2] = ?

当我们运行这段代码时,控制台中会记录什么值? const arr [9, 8, 7, 6]; const res arr[1, 2]; console.log(res);当我们运行这段代码时,res 的值将是 7。并且控制台中会打印出 7。 让我们来详细分析一下。 第一步:[1, 2] 会被转换成 [2]。 为什么? 后续的元素 [1, 2] …...

docker部署Jira+配置MySQL8数据库

写在前面:如果你通过docker安装Jira且启动过,然后你现在又想使用mysql数据库,需要注意 你除了停掉原有容器,还需要删除:/var/lib/docker/volumes/jiraVolume/_data下的文件,否则启动后会无法正常使用。注意…...

YOLOv5全网独家首发:DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测实现暴力涨点

💡💡💡本文独家改进:DCNv4更快收敛、更高速度、更高性能,完美和YOLOv5结合,助力涨点 DCNv4优势:(1) 去除空间聚合中的softmax归一化,以增强其动态性和表达能力;(2) 优化存储器访问以最小化冗余操作以加速。这些改进显著加快了收敛速度,并大幅提高了处理速度,DCN…...

HTML中常用标签--详解

目录 1.b/strong标签 2.i/em 标签 3.u标签 4.del删除线 5.br换行 6.p标签 * 7.pre 预处理标签 8.span标签** 9.div标签*** 10.sub标签 11.sup标签 12.hr标签 13.hn标签 14.HTML5中语义标签 特殊字符 15.多媒体标签 img*** a 标签*** 第一种用法:…...

Vue实现字符串首字母大写、翻转字符串、获取用户选定的文本

目录 Vue2实现字符串首字母大写Vue3实现字符串首字母大写Vue2实现翻转字符串Vue3实现翻转字符串Vue2获取用户选定的文本Vue3获取用户选定的文本 Vue2实现字符串首字母大写 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"…...

基于springboot+vue的旅游网站系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…...

GB/T28181-2022之图像抓拍规范解读和设计实现

技术背景 GB/T28181-2022相对2016版&#xff0c;对图像抓拍有了明确的界定&#xff0c;图像抓拍在视频监控行业非常重要, Android平台GB28181设备接入端&#xff0c;无需实时上传音视频实时数据的情况下&#xff0c;就可以抓图上传到指定的图像存储服务器上。 图像抓拍基本要…...

阿赵UE学习笔记——10、Blender材质和绘制网格体

阿赵UE学习笔记目录   大家好&#xff0c;我是阿赵。   之前介绍了虚幻引擎的材质和材质实例。这次来介绍一个比较有趣的内置的Blender材质。   在用Unity的时候&#xff0c;我做过一个多通道混合地表贴图的效果&#xff0c;而要做过一个刷顶点颜色混合地表和水面的效果。…...

数据结构--串

本文为复习的草稿笔记&#xff0c;&#xff0c;&#xff0c;有点乱 1. 串的基本概念和基本操作 串是由零个或多个字符组成的有限序列 2. 串的存储结构 3.串的应用 模式匹配 BF算法&#xff08;简单匹配算法 穷举法 算法思路&#xff1a;从子串的每一个字符开始依次与主串…...

RabbitMQ交换机(3)-Topic

1.Topic模式 RabbitMQ的Topic模式是一种基于主题的消息传递模式。它允许发送者向一个特定的主题&#xff08;topic&#xff09;发布消息&#xff0c;同时&#xff0c;订阅者也可以针对自己感兴趣的主题进行订阅。 在Topic模式中&#xff0c; 主题通过一个由单词和点号组成的字…...

前端密钥怎么存储,以及临时存储一些数据,如何存储才最安全?

前端密钥存储安全的方案&#xff1a; 1、使用浏览器提供的本地存储&#xff1a;现代浏览器提供了本地存储机制&#xff0c;例如 Web Storage&#xff08;localStorage 和 sessionStorage&#xff09;或 IndexedDB。可以将密钥存储在这些本地存储中&#xff0c;并使用浏览器提供…...

第16章_网络编程拓展练习(TCP编程,UDP编程)

文章目录 第16章_网络编程拓展练习TCP编程1、学生与老师交互2、查询单词3、拓展&#xff1a;查询单词4、图片上传5、拓展&#xff1a;图片上传6、多个客户端上传文件7、群聊 UDP编程8、群发消息 第16章_网络编程拓展练习 TCP编程 1、学生与老师交互 案例&#xff1a;客户端模…...

深入Docker5:安装nginx部署完整项目

目录 准备 为什么要使用nginx mysql容器构建 1.删除容器 2.创建文件夹 3.上传配置文件 4.命令构建mysql容器 5.进入mysql容器&#xff0c;授予root所有权限 6.在mysql中用命令运行sql文件 7.创建指定数据库shop 8.执行指定的sql文件 nginx安装与部署 1.拉取镜像 2…...

HBASE学习四:常用命令汇总梳理(包括数据库、zk、hdfs相关操作与配置)

1、服务状态 1、后台查询 hbase shell #进入hbase的shell页面,配置环境变量可直接执行。status #查看当前服务状态status detailed #查看当前详细服务信息,包括master的active和standby信息version 查看版本信息 2、页面查询 http://HMASTERip:16010 #查看master 状态 …...

Android平台RTSP|RTMP播放端实时快照保存JPG还是PNG?

JPG还是PNG&#xff1f; 实际上&#xff0c;在前几天的blog&#xff0c;我们有从压缩方式、图像质量、透明效果、可编辑性等各方面做过差异化的介绍。 压缩方式&#xff1a;JPG是一种有损压缩格式&#xff0c;通过丢弃图像数据来减小文件大小&#xff0c;因此可能会损失一些图…...

【人工智能】之深入了解嵌入模型中的 Token:NLP 中的语义之旅(1)

自然语言处理&#xff08;NLP&#xff09;领域的发展在很大程度上受到了嵌入模型的推动。嵌入模型通过将文本中的每个 token 转换为向量表示&#xff0c;为计算机理解语言提供了强大的工具。本文将深入研究嵌入模型中的 token&#xff0c;揭示它在 NLP 中的重要性以及在语义表示…...

UML-实现图(组件图和部署图)

实现图是从系统的层次来描述的&#xff0c;描述硬件的组成和布局&#xff0c;描述软件系统划分和功能实现。 UML-实现图&#xff08;组件图和部署图&#xff09; 一、组件图1.组件图的元素&#xff08;1&#xff09;组件&#xff08;2&#xff09;接口&#xff08;3&#xff09…...

苹果Find My可查找添加32件物品,伦茨科技ST17H6x芯片加速产品赋能

苹果最近更新的支持文档证实&#xff0c;从 iOS 16 开始&#xff0c;"Find My"可查找添加物品从16件增加到32件&#xff0c;AirTag 和“查找”网络中的物品利用“查找”网络的强大功能来发挥作用&#xff0c;这个网络由数亿台加密的匿名 Apple 设备构成。“查找”网络…...

postman后端测试时invalid token报错+token失效报错解决方案

报错信息1{“msg”:“invalid token”,“code”:401} 没有添加postman的token信息 报错信息2{“msg”: “token失效&#xff0c;请重新登录”,“code”: 401} 写了token但是token信息写的是错的,会提示token失效 解决方案如下 仅写完后端的查询,但是前端还没写的时候,可…...

使用 mybatis-plus 的mybaits的一对多时, total和record的不匹配问题

应该是框架的问题&#xff0c;去官方仓库提了个issues&#xff0c;等回复 https://github.com/baomidou/mybatis-plus/issues/5923 回复来了&#xff1a; 背景 发现 record是两条&#xff0c;但是total显示3 使用resultMap一对多时&#xff0c;三条数据会变成两条&#xff0…...

SpringCloud之Nacos

一、微服务介绍 1. 什么是微服务 2014年,Martin Fowler(马丁福勒 ) 提出了微服务的概念,定义了微服务是由以单一应用程序构成的小服务,自己拥有自己的进程与轻量化处理,服务依业务功能设计,以全自动的方式部署,与其他服务使用 HTTP API 通信。同时服务会使用最小的规模…...

小封装高稳定性振荡器 Sg2520egn / sg2520vgn, sg2520ehn / sg2520vhn

描述 随着物联网和ADAS等5G应用的实施&#xff0c;数据流量不断增长&#xff0c;网络基础设施变得比以往任何时候都更加重要。IT供应商一直在快速建设数据中心&#xff0c;并且对安装在数据中心内部/内部的光模块有很大的需求。此应用需要具有“小”&#xff0c;“低抖动”和“…...

使用 Apache POI 更新/覆盖 特定的单元格

使用 Apache POI 更新特定的单元格 一. 需求二. 实现三. 效果 一. 需求 将以下表中第4行&#xff0c;第4列的单元格由“张宇”更新为“汤家凤”&#xff0c;并将更行后的结果写入新的Excel文件中&#xff1b; 二. 实现 使用Apache POI&#xff0c;可以精确定位到需要更改的单…...

Spring Boot整合MyBatis-Plus

引言 在现代软件开发中&#xff0c;我们经常需要处理大量的数据。为了有效地管理这些数据&#xff0c;我们需要使用一些强大的框架。其中&#xff0c;Spring Boot和MyBatis-Plus是两个非常流行的框架。Spring Boot是一个基于Spring的开源Java框架&#xff0c;可以用于创建独立…...

springboot项目之AOP角色权限的判断

引言 开发的项目中&#xff0c;可能遇到不同的角色&#xff0c;不同的角色有不通的权限定义。AOP切面是个很好的解决方案。 实践 1. 定义MerchRoles Retention(RetentionPolicy.RUNTIME) Target(ElementType.METHOD) public interface MerchRoles {} 2. 定义切点 public c…...