当前位置: 首页 > news >正文

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据,并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题,我们采用LDA主题分析方法,结合jieba分词工具将文本分割成有意义的词语。此外,我们还使用snownlp情感分析库来评估微博热点话题的情感倾向。

在实施该分析过程中,我们首先通过网络爬虫技术从微博平台上收集热点数据。然后,使用pandas库对数据进行清洗、去重和预处理,以便更好地理解数据。接下来,我们使用jieba对微博内容进行分词处理,将其转化为有意义的词语。随后,我们运用LDA主题分析算法对微博热点话题进行建模和分类,以揭示话题之间的关联和趋势。最后,我们使用matplotlib库进行数据可视化,将分析结果以图表形式呈现,帮助用户更直观地了解微博热点话题的情况。通过这个基于Python的网络爬虫的微博热点分析流程,我们可以更深入地了解微博用户的关注点和情感倾向。这对于舆情监测、市场调研和品牌管理等领域都具有重要的应用价值。同时,该分析流程也为其他社交媒体平台的热点分析提供了参考和借鉴。

  • 网络爬虫的程序架构及整体执行流程

1、网络爬虫程序框架

基于Python的网络爬虫的微博热点分析项目,以下是网络爬虫程序框架:

导入所需的库:导入requests库用于发送HTTP请求,导入BeautifulSoup库用于解析HTML页面。

构造URL:根据微博热点数据的URL结构,构造需要访问的URL。可以通过添加查询参数来获取特定话题、时间范围或其他条件的数据。

发送请求并获取响应:使用requests库发送GET请求,将URL作为参数传递给get()函数,并将响应保存在变量中。

解析HTML页面:利用BeautifulSoup库对响应进行解析,提取出需要的数据,如微博内容、用户信息和评论等。

数据处理和存储:将解析得到的数据进行清洗、去重和格式化处理,然后可以选择将数据保存到文件中或存储在数据库中,以备后续分析使用。

重复步骤2-5:根据需求,可以设置循环或递归,以便获取多个页面的数据或持续监测微博热点。

实际开发中可能需要考虑更多的细节和边界情况,比如处理反爬措施、设置请求头部信息、处理异常情况等。通过这个框架,可以构建一个基本的网络爬虫程序,用于采集微博热点数据供后续分析使用。网络爬虫程序架构如图1所示。

图1网络爬虫程序架构图

2、网络爬虫的整体流程

  1. 获取初始URL;
  2. 发送请求并获取响应;
  3. 解析HTML页面;
  4. 数据处理和存储;
  5. 分析是否满足停止条件,并进入下一个循环。

网络爬虫的整体流程图如图2所示。

2 网络爬虫的整体流程图

3、需求分析

   数据采集需求:通过使用requests库实现微博热点数据的采集。需要获取最新和最热门的微博热点话题数据,包括话题内容、用户评论和转发数量等信息。

数据清洗和预处理需求:利用pandas库对采集到的数据进行清洗、去重和预处理,以便后续的数据分析和建模。需要处理缺失值、异常值和不一致的数据,并将其转换为适合分析的格式。

文本分析需求:使用jieba分词工具将微博内容进行分词,将文本转化为有意义的词语。这样可以更好地理解微博热点话题的关键词和主题。同时,需要应用LDA主题分析算法,从大量数据中提取潜在的话题模式和关联性。

情感分析需求:利用snownlp情感分析库对微博热点话题的情感倾向进行评估。这可以帮助我们了解用户对话题的情感态度和意见,从而更全面地分析微博热点话题的影响力和用户反馈。

可视化需求:使用matplotlib库进行数据可视化,将分析结果以图表的形式呈现出来。这样可以直观地展示微博热点话题的趋势、情感倾向和关联性,帮助用户更好地理解和解读分析结果。

4、网络爬虫系统设计

数据采集模块:使用requests库发送HTTP请求,根据微博热点数据的URL结构构造请求,并获取响应。解析HTML页面,提取所需的数据,如微博内容、用户信息和评论等。

数据清洗和预处理模块:使用pandas库对采集到的数据进行清洗、去重和预处理。处理缺失值、异常值和不一致的数据,将其转换为适合分析的格式。

文本分析模块:使用jieba分词工具将微博内容进行分词处理,将文本转化为有意义的词语。应用LDA主题分析算法,从大量数据中提取潜在的话题模式和关联性。

情感分析模块:利用snownlp情感分析库对微博热点话题的情感倾向进行评估。分析文本的情感色彩,了解用户对话题的情感态度和意见。

可视化模块:使用matplotlib库进行数据可视化,将分析结果以图表的形式呈现出来。生成趋势图、饼图等可视化工具,直观地展示微博热点话题的特征和趋势。。

根据以上设计思路和设计原则得出功能结构图。如图3所示。

5、网页数据的爬取

基于Python的网络爬虫对微博热点数据进行爬取,并将爬取到的数据存储到CSV文件中。具体实现过程如下:

首先,使用requests库发送HTTP请求,模拟用户访问微博热点页面。通过循环遍历不同页数,获取每一页上的微博博文的链接。

然后,使用BeautifulSoup库解析HTML页面,提取出博文的编号和其他相关信息。在解析过程中,还包括一些正则表达式的处理,以获取更精确的数据。

接着,利用requests库再次发送HTTP请求,获取每篇博文的详细内容。根据博文编号构造请求URL,并携带必要的参数,如Cookie和Headers等,以模拟登录状态。

在获取到博文详细内容后,使用json库解析响应结果,提取出博文的正文、发布人ID、点赞数、评论数、转发数等关键信息。

根据需要,对博文的全文进行展开处理,如果有全文内容,则提取全文内容;否则,将正文内容作为全文。

最后,将爬取到的数据以列表形式存储,并使用csv库将数据写入到CSV文件中。

该数据爬取功能的作用是获取微博热点话题下的博文数据,包括博文的文本内容、点赞数、评论数等信息。这些数据可以用于后续的数据分析和可视化,如使用pandas库对数据进行清洗和处理,使用matplotlib库将结果可视化呈现,以便更好地理解微博热点话题的趋势、情感倾向和关联性。

通过这个数据爬取功能,可以实现对微博热点话题的全面分析和洞察,帮助用户了解公众舆论、用户需求和市场趋势,从而支持舆情监测、市场调研、品牌管理等领域的决策和判断。最后抓取数据代码运行结果如图4所示。

  1. SnowNLP库进行情感分析

通过使用SnowNLP库对微博热点博文的内容进行情感分析,计算每篇博文的情感分数。根据情感分数的大小,将博文划分为积极、中性或消极情感,并将情感分数和情感分析结果添加到数据中。这样可以帮助用户了解微博热点话题下博文的情感倾向和态度,从而更全面地分析和解读微博热点话题的影响力和用户反馈。代码如下所示。

LDA主题分析

通过plt.scatter()函数,可以将两个变量的关系以散点图的形式呈现。在微博热点分析中,可以使用散点图展示关键词和权重之间的关系,例如将关键词作为横坐标,权重作为纵坐标,以点的大小或颜色表示权重的大小,从而观察关键词的分布情况和权重的差异。

相关文章:

基于网络爬虫的微博热点分析,包括文本分析和主题分析

基于Python的网络爬虫的微博热点分析是一项技术上具有挑战性的任务。我们使用requests库来获取微博热点数据,并使用pandas对数据进行处理和分析。为了更好地理解微博热点话题,我们采用LDA主题分析方法,结合jieba分词工具将文本分割成有意义的…...

前端图片转base64 方法

在uni-app、Vue.js或其他前端框架中,将图片转换为Base64编码的过程是相似的。以下是一个简单的示例,说明如何在这些环境中使用JavaScript将图片转换为Base64编码。 1. HTML部分 首先,你需要在HTML中放置一个文件输入元素,用于选…...

Go语言数据结构(一)双向链表

list容器 Go语言中list容器定义在"container/list"包中,实现了一个双向链表。本文第一部分总结源码包中的方法,第二部分展示使用list包的常见示例用法以及刷题时的用法。 食用指南:先看第二部分的常用示例用法然后再用到时在第一部…...

【MySql】MySQL 如何创建新用户

具体代码与实现方法 登录 MySQL: 使用 root 用户或具有相应权限的用户登录到 MySQL。可以使用以下命令: mysql -u root -p这里 -u 后面跟的是用户名,-p 表示提示输入密码。 创建新用户: 使用以下 SQL 命令创建新用户:…...

【DFS】200.岛屿数量

题目 法1:DFS 最简单的DFS必须掌握!!! class Solution {public int numIslands(char[][] grid) {int m grid.length, n grid[0].length, ans 0;if (m 0 || n 0) {return ans;}boolean[][] visited new boolean[m][n];for…...

Vue动态添加新的属性到实例上(vue的问题)

当我们去看vue文档的时候,发现如果在实例创建之后添加新的属性到实例上,它不会触发视图更新。比如我们我们开始创建了一个对象实例,在实例创建之后为其增加新的属性,我们发现这个属性不能生效,此时需要使用this.$set()方法。 &…...

HarmonyOS应用开发者高级认证

一、判断题 云函数打包完成后,需要到AppGallery Connect创建对应函数的触发器才可以在端侧中调用(错) 在column和Row容器组件中,aligntems用于设置子组件在主轴方向上的对齐格式,justifycontent用于设置子组件在交叉轴…...

设计模式复盘

一、背景 在项目中,对于单据的扩展是基于类似于接口扩展实现的。从业务横行来看,业务有A、B、C;从纵向来看,单个业务逻辑编排也可以划分为基础数据查询,决策判断,逻辑执行三大块。 单据扩展:平…...

电力能源三维可视化合集 | 图扑数字孪生

电力能源是现代社会发展和运行的基石,渗透于工业、商业、农业、家庭生活等方方面面,它为经济、生活质量、环境保护和社会发展提供了巨大的机会和潜力。图扑软件应用自研 HT for Web 强大的渲染引擎,助力现代化的电力能源数字孪生场景&#xf…...

What is `@Repository` does?

Repository 是Spring注解,标识数据访问层组件(DAO, Data Access Object) 当一个类被标记为 Repository 时: 1、组件扫描与自动代理: Spring通过组件扫描(Component Scan)机制发现带有 Reposit…...

c# 自定义 滑块TrackBar

辛苦半天做出来的,如果觉得好用,记得点赞 效果图如下: 具体操作: 1 、添加代码(代码在下面),重新生成下整个工程,在工具栏中就出现控件,将控件拖到窗体中 2、只需要调整…...

MyBatis整合分页插件PageHelper的使用和说明

MyBatis,作为目前流行的ORM框架,大大方便了日常开发。而对于分页查询,虽然可以通过SQL的limit语句实现,但是比较繁琐。而MyBatis PageHelper的出现,则解决了这一痛点。这里将介绍如何在Spring Boot、MyBatis的环境中通…...

情人节专属--HTML制作情人节告白爱心

💕效果展示 💕html展示 <!DOCTYPE html> <html lang="en" > <head>...

带你学C语言-指针(4)

目录 ​编辑 ⚾0.前言 &#x1f3c0;1.回调函数 ⚽2.qsort &#x1f3c9;2.1 qsort函数的模拟实现 &#x1f3be;3.sizeof与strlen对比 &#x1f3be;4.结束语 ⚾0.前言 言C之言&#xff0c;聊C之识&#xff0c;以C会友&#xff0c;共向远方。各位CSDN的各位你们好啊&…...

ACL访问控制列表

ACL&#xff1a;访问控制列表 在路由器流量进或出接口上&#xff0c;匹配流量产生动作-- 允许 拒绝 &#xff08;访问限制&#xff09;定义感兴趣流量--- 匹配流量后&#xff0c;将流量提交给其他的协议进行策略 匹配规则&#xff1a; 至上而下逐一匹配&#xff0c;上条匹配按…...

sqli-labs关卡25(基于get提交的过滤and和or的联合注入)

文章目录 前言一、回顾上一关知识点二、靶场第二十五关通关思路1、判断注入点2、爆字段个数3、爆显位位置4、爆数据库名5、爆数据库表名6、爆数据库列名7、爆数据库数据 总结 前言 此文章只用于学习和反思巩固sql注入知识&#xff0c;禁止用于做非法攻击。注意靶场是可以练习的…...

机器学习周刊第六期:哈佛大学机器学习课、Chatbot Ul 2.0 、LangChain v0.1.0、Mixtral 8x7B

— date: 2024/01/08 — 吴恩达和Langchain合作开发了JavaScript 生成式 AI 短期课程&#xff1a;《使用 LangChain.js 构建 LLM 应用程序》 大家好&#xff0c;欢迎收看第六期机器学习周刊 本期介绍10个内容&#xff0c;涉及Python、机器学习、大模型等,目录如下&#xff…...

【算法与数据结构】Java实现查找与排序

文章目录 第一部分&#xff1a;查找算法二分查找插值查找分块查找哈希查找树表查找 第二部分&#xff1a;排序算法冒泡排序选择排序插入排序快速排序 总结 第一部分&#xff1a;查找算法 二分查找 也叫做折半查找&#xff0c;属于有序查找算法。 前提条件&#xff1a;数组数据…...

边缘计算的挑战和机遇(结合RDH-EI)

边缘计算的挑战和机遇 边缘计算面临着数据安全与隐私保护、网络稳定性等挑战&#xff0c;但同时也带来了更强的实时性和本地处理能力&#xff0c;为企业降低了成本和压力&#xff0c;提高了数据处理效率。因此&#xff0c;边缘计算既带来了挑战也带来了机遇&#xff0c;需要我…...

详解IP安全:IPSec协议簇 | AH协议 | ESP协议 | IKE协议_ipsec esp

目录 IP安全概述 IPSec协议簇 IPSec的实现方式 AH&#xff08;Authentication Header&#xff0c;认证头&#xff09; ESP&#xff08;Encapsulating Security Payload&#xff0c;封装安全载荷&#xff09; IKE&#xff08;Internet Key Exchange&#xff0c;因特网密钥…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

0x-3-Oracle 23 ai-sqlcl 25.1 集成安装-配置和优化

是不是受够了安装了oracle database之后sqlplus的简陋&#xff0c;无法删除无法上下翻页的苦恼。 可以安装readline和rlwrap插件的话&#xff0c;配置.bahs_profile后也能解决上下翻页这些&#xff0c;但是很多生产环境无法安装rpm包。 oracle提供了sqlcl免费许可&#xff0c…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...