深度学习-第T1周——实现mnist手写数字识别
深度学习-第T1周——实现mnist手写数字识别
- 深度学习-第P1周——实现mnist手写数字识别
- 一、前言
- 二、我的环境
- 三、前期工作
- 1、导入依赖项并设置GPU
- 2、导入数据集
- 3、归一化
- 4、可视化图片
- 5、调整图片格式
- 四、构建简单的CNN网络
- 五、编译并训练模型
- 1、设置超参数
- 2、编写训练函数
- 六、预测
- 七、总结
深度学习-第P1周——实现mnist手写数字识别
一、前言
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
二、我的环境
- 电脑系统:Windows 10
- 语言环境:Python 3.8.5
- 编译器:colab在线编译
- 深度学习环境:Pytorch
三、前期工作
1、导入依赖项并设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0]tf.config.experimental.set_memory_growth(gpu0, True)tf.config.set_visible_device([gpu0], "GPU")
2、导入数据集
使用dataset下载MNIST数据集,并划分训练集和测试集
使用dataloader加载数据
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_lables), (test_images, test_lables) = datasets.mnist.load_data()
3、归一化
数据归一化作用
- 使不同量纲的特征处于同一数值量级,减少方差大的特征的影响,使模型更准确
- 加快学习算法的准确性
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape, test_images.shape, train_lables.shape, test_lables.shape
4、可视化图片
#进行图像大小为10宽10长的绘图
plt.figure(figsize = (10, 10))for i in range(20):plt.subplot(2, 10, i + 1)#设置不显示x轴刻度plt.xticks([])#设置不显示y轴刻度plt.yticks([])#设置不显示子图网络格plt.grid(False)#图像显示,cmap为颜色绘图,plt.cm.binary为matplotlib.cm的色表plt.imshow(train_images[i], cmap = plt.cm.binary)#设置x轴为标签显示的图片的对应的数字plt.xlabel(train_lables[i])
5、调整图片格式
train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))
四、构建简单的CNN网络
对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。
#二、构建简单的CNN网络
# 创建并设置卷积神经网络
# 卷积层:通过卷积操作对输入图像进行降维和特征抽取
# 池化层:是一种非线性形式的下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的鲁棒性。
# 全连接层:在经过几个卷积和池化层之后,神经网络中的高级推理通过全连接层来完成。
model = models.Sequential([layers.Conv2D(32, (3, 3), activation = 'relu', input_shape= (28, 28, 1)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation = 'relu'),layers.MaxPooling2D((2, 2)),layers.Flatten(),layers.Dense(64, activation = 'relu'),layers.Dense(10)])model.summary()
#以上为简单的tf八股模板,可以看B站的北大老师曹健的tensorflow笔记

五、编译并训练模型
1、设置超参数
#这里设置优化器,损失函数以及metrics
model.compile(#设置优化器为Adam优化器optimizer = 'adam',#设置损失函数为交叉熵损失函数loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),metrics = ['accuracy']
)
2、编写训练函数
history = model.fit(train_images,train_lables,epochs = 10,validation_data = (test_images, test_lables)
)

六、预测
plt.imshow(test_images[1])

pre = model.predict(test_images)
pre[1]

七、总结
提前看了一遍北大软微老师的tf笔记,对于tensorflow建模型的八股大致弄懂了
相关文章:
深度学习-第T1周——实现mnist手写数字识别
深度学习-第T1周——实现mnist手写数字识别深度学习-第P1周——实现mnist手写数字识别一、前言二、我的环境三、前期工作1、导入依赖项并设置GPU2、导入数据集3、归一化4、可视化图片5、调整图片格式四、构建简单的CNN网络五、编译并训练模型1、设置超参数2、编写训练函数六、预…...
质量保障(QA)和质量控制(QC)
质量保证和质量控制是比较容易混淆的一组概念。定义实施质量保证是执行过程组的一个过程,而质量控制是监控过程组的一个过程。质量保证的定义:审计质量要求和质量控制测量结果,确保采用合理的质量标准和操作性定义的过程。简单地说࿰…...
你真的会用三元运算符吗?
在我们日常搬砖中,我们经常会看到三元运算符,但是你了解三元运算符到底是怎么用吗?接下来我们就下来详细介绍一下三元运算符大厂面试题分享 面试题库前后端面试题库 (面试必备) 推荐:★★★★★地址&#x…...
TIA博途中使用SCL语言实现选择排序算法并封装成FC全局库
TIA博途中使用SCL语言实现选择排序算法并封装成FC全局库 选择排序算法包括升序和降序2种: 升序排列: 第一轮从数据源中找到最小值排在第一位,第二轮从剩下的数据中寻找最小值排在第二位,依次类推,直到所有数据完成遍历;降序排列: 第一轮从数据源中找到最大值排在第一位,…...
【C++修炼之路】24.哈希应用--位图
每一个不曾起舞的日子都是对生命的辜负 哈希应用--位图哈希应用:位图一.提出问题二.位图概念三.位图代码四.位图应用五.经典问题哈希应用:位图 一.提出问题 问题: 给40亿个不重复的无符号整数,没排过序。给一个无符号整数&#x…...
4. 字符设备驱动高级--- 下篇
文章目录一、字符设备驱动高级1.1 注册字符设备驱动新接口1.1.1 新接口与旧接口1.1.2 cdev介绍1.1.3 设备号1.1.4 编程实践1.1.5 alloc_chrdev_region自动分配设备号1.1.6 中途出错的倒影式错误处理方法二、字符设备驱动注册代码分析2.1 旧接口register_chrdev2.2 新接口regist…...
ChatGPT介绍以及一些使用案例
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
PCL 点云高斯混合聚类(GMM)
文章目录 一、简介二、算法实现三、实现效果参考资料一、简介 与k均值使用原型向量来刻画聚类结构不同,高斯混合聚类(Mixture-of-Gaussian)采用了概率模型来表达聚类原型。从名字中就可以知晓,该方法将会结合高斯分布来进行聚类过程,该分布的概率密度函数定义如下所示: p (…...
Docker学习(十六)踩坑,如何将对容器的修改同步到基础镜像中
目录1.背景2.解决方法1)将容器文件进行归档2)创建一个新的 Dockerfile3)构建新的基础镜像3.注意事项4.commit命令踩坑记录1.背景 最近接手了一个docker服务,现需要对镜像进行修改,原始的 Dockerfile 已经丢失ÿ…...
食品与疾病关系预测赛题
和鲸平台数据分析实战 题目:食品与疾病关系预测算法赛道 一、赛题描述 食品与疾病关系预测算法赛道 越来越多的证据表明,食物分子与慢性疾病之间存在关联甚至治疗关系。营养成分可能直接或间接地作用于人类基因组,并调节参与疾病风险和疾病…...
Symbol
Symbol是ES6新增的一种基本数据类型 它用来表示独一无二的值, 通过Symbol函数生成 Symbol前面不能加new ,创建symbol类型指的时候传入一个参数,这个参数需要是字符串 使用Symbol函数创建一个symbol类型值,可以给它传入一个字符串参数…...
NC65 对上年度反结账,调整数据后重新结账后,对本年度年初重算时系统报错:更新记数错误。
1、对上年度反结账,调整数据后重新结账后,对本年度年初重算时系统报错:更新记数错误。 解决方案: 1、在期初余额节点,按Ctrl+ALT+A重建期初凭证; 2、到结账节点,重建余额表,选择有问题的财务核算账簿,注意:会计期间要放空; 3、到期初余额节点,将刚才删除期初数据的…...
位运算相关
文章目录一、求1的个数二、另类加法三、数组中出现一次的数字四、数组中出现一次的数字变形一、求1的个数 二进制中1的个数 法一:逐位判断 根据与&运算 n&10,说明n的最右边一位为0 n&11,说明n的最右边一位为1 所以思路就是&…...
Linux进程信号(产生、保存、处理)/可重入函数概念/volatile理解/SIGCHLD信号
首先区分一下Linux信号跟进程间通信中的信号量,它们的关系就犹如老婆跟老婆饼一样,没有一毛钱的关系。 信号的概念 信号的概念:信号是进程之间事件异步通知的一种方式,属于软中断。比如:红绿灯是一种信号,…...
锯齿数组 - 贪心
文章目录锯齿数组 -贪心(不过挺像滑动窗口的)1144. 递减元素使数组呈锯齿状锯齿数组 -贪心(不过挺像滑动窗口的) 1144. 递减元素使数组呈锯齿状 题目链接:1144. 递减元素使数组呈锯齿状 题目大意:给你一个…...
[CVPR 2022] Balanced Contrastive Learning for Long-Tailed Visual Recognition
Contents IntroductionMethodPreliminariesBalanced Contrastive Learning (BCL)Drawbacks of SCLClass-averagingClass-complementLower bound of BCLOptimization with Logit CompensationFrameworkExperimentReferencesIntroduction 作者发现对于在长尾数据集上,Supervised…...
23种设计模式-工厂模式
工厂模式是一种创建型设计模式,它提供了一种创建对象的方式,而无需将具体的对象创建逻辑暴露给客户端。在Java中,工厂模式常常用于创建复杂对象或对象的构造过程涉及到多个步骤的情况。 在Android开发中,工厂模式也经常被使用&am…...
Linux操作系统学习(进程等待)
文章目录进程等待进程等待的必要性如何进程等待waiwaitpid验证进程等待 我们知道fork函数可以创建一个子进程,而子进程通常是替父进程完成一些任务,而父进程在fork之后需要通过wait/waitpid等待子进程退出。这就是进程等待 进程等待的必要性 通过获…...
Docker学习(十八)load 和 import 命令的区别
Docker 中有两个命令可以将本地文件系统中的 tar 文件导入到 Docker 中:docker load 和 docker import。尽管它们的作用类似,但它们之间有一些重要的区别。 1.使用方式的不同: docker load 的使用示例: docker load --input tes…...
mysql中的事务
在日常生活中,我们会遇到一个场景,那就是在转账的时候,A有1000块钱,要给B转账500,那么最后的结果是A有500,B有500,但是也有可能出现A没有钱了,B有1000块,或者在转账过程中卡顿,这是不符合逻辑的,那么这个时候就要使用事务来解决问题 事务就是把一堆sql语句打包成一个整体,要么…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
