当前位置: 首页 > news >正文

【高等数学之牛莱公式】

一、深入挖掘定积分

二、变限积分

三、变限积分的"天然"连续性 

四、微积分基本定理 

五、定积分·基本方法 

5.1、换元法 

5.2、分部积分法 

六、定积分·经典结论 

七、区间再现公式 

八、三角函数积分变换公式

九、周期函数积分变换公式 

十、分段函数求定积分

相关文章:

【高等数学之牛莱公式】

一、深入挖掘定积分 二、变限积分 三、变限积分的"天然"连续性 四、微积分基本定理 五、定积分基本方法 5.1、换元法 5.2、分部积分法 六、定积分经典结论 七、区间再现公式 八、三角函数积分变换公式 九、周期函数积分变换公式 十、分段函数求定积分...

基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab)

基于HFSS的微带线特性阻抗仿真-与基于FDTD的计算电磁学方法对比(Matlab) 工程下载: HFSS的微带线特性阻抗仿真工程文件(注意版本:HFSS2023R2): https://download.csdn.net/download/weixin_445…...

【SQL】SQL语法小结

相关资料 参考链接1:SQL 语法(超级详细) 参考链接2:史上超强最常用SQL语句大全 SQL练习网站:CSDN、牛客、LeetCode、LintCode SQL相关视频: 推荐书籍: 文章目录 数据分析对SQL的要求SQL语法简介…...

Open CASCADE学习|显示模型

目录 1、编写代码 Viewer.h Viewer.cpp ViewerInteractor.h ViewerInteractor.cpp helloworld.cpp 2、配置 3、编译运行 1、编写代码 Viewer.h #pragma once ​ #ifdef _WIN32 #include <Windows.h> #endif ​ // Local includes #include "ViewerInteract…...

【C++】string的基本使用

从这篇博客开始&#xff0c;我们的C部分就进入到了STL&#xff0c;STL的出现可以说是C发展历史上非常关键的一步&#xff0c;自此C和C语言有了较为明显的差别。那么什么是STL呢&#xff1f; 后来不断的演化&#xff0c;发展成了知名的两个版本&#xff0c;一个叫做P.J.版本&am…...

vue 里 props 类型为 Object 时设置 default: () => {} 返回的是 undefined 而不是 {}?

问题 今天遇到个小坑&#xff0c;就是 vue 里使用 props 传参类型为 Object 的时候设置 default: () > {} 报错&#xff0c;具体代码如下 <template><div class"pre-archive-info"><template v-if"infoData.kaimo ! null">{{ infoD…...

04 SpringMVC响应数据之页面跳转控制+返回JSON数据+返回静态资源

1. handler方法分析 /*** TODO: 一个controller的方法是控制层的一个处理器,我们称为handler* TODO: handler需要使用RequestMapping/GetMapping系列,声明路径,在HandlerMapping中注册,供DS查找!* TODO: handler作用总结:* 1.接收请求参数(param,json,pathVariable,共享…...

Python圣诞主题绘图:用turtle库打造冬日奇妙画面【第31篇—python:圣诞节】

文章目录 Python圣诞主题绘图导言代码结构概览详细解析drawlight函数tree函数xzs函数drawsnow函数五角星的绘制 完整代码代码解析总结 Python圣诞主题绘图 导言 圣诞季节是个充满欢乐和创意的时刻。在这个技术博客中&#xff0c;我们将深入探讨如何使用Python的turtle库创建一…...

[开发语言][c++]:Static关键字和全局变量

Static关键字和全局变量 1. 生命周期、作用域和初始化时机2. 全局变量3. Static 关键字3.1 面向过程3.1.1 静态全局变量3.1.2 静态局部变量&#xff08;单例中会使用&#xff09;3.1.3 静态函数 3.2 面向对象3.2.1 类内静态成员变量3.2.2 类内静态成员函数 Reference 写在前面&…...

计算机组成原理 第一弹

ps&#xff1a;本文章的图片来源都是来自于湖科大教书匠高老师的视频&#xff0c;声明&#xff1a;仅供自己复习&#xff0c;里面加上了自己的理解 这里附上视频链接地址&#xff1a;1-2 计算机的发展_哔哩哔哩_bilibili ​​ 目录 &#x1f680;计算机系统 &#x1f680;计…...

Hadoop基础知识

Hadoop基础知识 1、Hadoop简介 广义上来说&#xff0c;Hadoop通常是指一个更广泛的概念——Hadoop生态圈。狭义上说&#xff0c;Hadoop指Apache这款开源框架&#xff0c;它的核心组件有&#xff1a; HDFS&#xff08;分布式文件系统&#xff09;&#xff1a;解决海量数据存储Y…...

Java进阶之旅第五天

Java进阶之旅第五天 不可变集合 应用场景 1.如果某个数据不能被修改,把它拷贝到不可变集合中是个很好的实践2.当集合对象被不可信的库调用时,不可变形式是安全的3.不可变集合不能修改,只能进行查询 获取方式 在List,Set,Map接口中,都存在静态的of方法,可以获取一个不可变的…...

拓展边界:前端世界的跨域挑战

目录 什么是跨域 概念 同源策略及限制内容 常见跨域场景 如何解决跨域 CORS Nginx代理跨域 Node中间件代理跨域 WebSocket postMessage JSONP 其他 什么是跨域 概念 在此之前&#xff0c;我们了解一下一个域名地址的组成&#xff1a; 跨域指的是在网络安全中&…...

旅游项目day03

1. 前端整合后端发短信接口 2. 注册功能 后端提供注册接口&#xff0c;接受前端传入的参数&#xff0c;创建新的用户对象&#xff0c;保存到数据库。 接口设计&#xff1a; 实现步骤&#xff1a; 手机号码唯一性校验&#xff08;后端一定要再次校验手机号唯一性&#xff09…...

单片机学习记录(一)

简答题 第1章 1.微处理器、微计算机、CPU、单片机、嵌入式处理器他们之间有何区别&#xff1f; 答&#xff1a;微处理器、CPU都是中央处理器的不同称谓&#xff0c;微处理器芯片本身不是计算机&#xff1b; 单片机、微计算机都是一个完整的计算机系统&#xff0c;单片机是集…...

MacBookPro怎么数据恢复? mac电脑数据恢复?

使用电脑的用户都知道&#xff0c;被删除的文件一般都会经过回收站&#xff0c;想要恢复它直接点击“还原”就可以恢复到原始位置。mac电脑同理也是这样&#xff0c;但是“回收站”在mac电脑显示为“废纸篓”。 如果电脑回收站&#xff0c;或者是废纸篓里面的数据被清空了&…...

Python多线程—threading模块

参考&#xff1a;《Python核心编程》 threading 模块的Thread 类是主要的执行对象&#xff0c;而且&#xff0c;使用Thread类可以有很多方法来创建线程&#xff0c;这里介绍以下两种方法&#xff1a; 创建 Thread 实例&#xff0c;传给它一个函数。派生 Thread 的子类&#xf…...

mysql limit

语法 SELECT * FROM TABLE_NAME LIMIT 起始位置&#xff0c;偏移量注&#xff1a; 起始位置从0开始 示例 查询的第1条数据到第100条数据 limit 0,100查询的第101条数据到第200条数据 limit 100,100注意不要用 limit 101,100示例2 limit 语句应放在order by语句后面执行 …...

解决国内Linux服务器无法使用Github的方法

解决思路&#xff1a;修改Host https://www.ipaddress.com/ 利用上面的网站查询github.com和raw.githubusercontent.com的DNS解析的IP地址 最后&#xff0c;修改服务器的/etc/hosts 添加如下两行&#xff1a; 140.82.112.3 github.com 185.199.108.133 raw.githubuserconte…...

动态规划基础(二)最长公共子序列 LCS

讲解求两个串中最长的公共的子序列长度或输出子序列等 poj1458 题目大意 给定两个字符串&#xff0c;要求输出两个字符串中最长公共子序列长度 思路 我们定义 a [ i ] [ j ] a[i][j] a[i][j]为&#xff0c;当字串 s t r 1 str1 str1到 i i i位置&#xff0c;字串 s t r 2 s…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

Spring Security 认证流程——补充

一、认证流程概述 Spring Security 的认证流程基于 过滤器链&#xff08;Filter Chain&#xff09;&#xff0c;核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤&#xff1a; 用户提交登录请求拦…...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

从零手写Java版本的LSM Tree (一):LSM Tree 概述

&#x1f525; 推荐一个高质量的Java LSM Tree开源项目&#xff01; https://github.com/brianxiadong/java-lsm-tree java-lsm-tree 是一个从零实现的Log-Structured Merge Tree&#xff0c;专为高并发写入场景设计。 核心亮点&#xff1a; ⚡ 极致性能&#xff1a;写入速度超…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...

Redis专题-实战篇一-基于Session和Redis实现登录业务

GitHub项目地址&#xff1a;https://github.com/whltaoin/redisLearningProject_hm-dianping 基于Session实现登录业务功能提交版本码&#xff1a;e34399f 基于Redis实现登录业务提交版本码&#xff1a;60bf740 一、导入黑马点评后端项目 项目架构图 1. 前期阶段2. 后续阶段导…...

数据库优化实战指南:提升性能的黄金法则

在现代软件系统中&#xff0c;数据库性能直接影响应用的响应速度和用户体验。面对数据量激增、访问压力增大&#xff0c;数据库性能瓶颈经常成为项目痛点。如何科学有效地优化数据库&#xff0c;提升查询效率和系统稳定性&#xff0c;是每位开发与运维人员必备的技能。 本文结…...