Python中的卷积神经网络(CNN)入门
卷积神经网络(Convolutional Neural Networks, CNN)是一类特别适用于处理图像数据的深度学习模型。在Python中,我们可以使用流行的深度学习库TensorFlow和Keras来创建和训练一个CNN模型。在本文中,我们将介绍如何使用Keras创建一个简单的CNN模型,并用它对手写数字进行分类。
1. 准备数据集
我们将使用MNIST数据集,这是一个常用的手写数字数据集。Keras库提供了一个方便的函数来加载MNIST数据集。数据集包含60000个训练样本和10000个测试样本,每个样本是一个28x28的灰度图像。
python
复制代码
from tensorflow.keras.datasets import mnist(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
接下来,我们需要对数据进行预处理。我们将图像数据归一化到0-1之间,并将标签数据进行one-hot编码:
python
复制代码
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype("float32") / 255test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype("float32") / 255from tensorflow.keras.utils import to_categoricaltrain_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
2. 创建CNN模型
我们将使用Keras创建一个简单的CNN模型,包括卷积层、池化层、全连接层等。模型的结构如下:
- 卷积层:使用32个3x3的卷积核,激活函数为ReLU;
- 池化层:使用2x2的最大池化;
- 卷积层:使用64个3x3的卷积核,激活函数为ReLU;
- 池化层:使用2x2的最大池化;
- 全连接层:包含128个神经元,激活函数为ReLU;
- 输出层:包含10个神经元,激活函数为softmax。
python
复制代码
from tensorflow.keras import layers
from tensorflow.keras import modelsmodel = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation="relu", input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation="relu"))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation="relu"))
model.add(layers.Dense(10, activation="softmax"))
3. 训练CNN模型
我们将使用训练数据集训练CNN模型,并在测试数据集上评估模型性能。我们将使用交叉熵损失函数和Adam优化器,训练10个epoch。
python
复制代码
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])model.fit(train_images, train_labels, epochs=10, batch_size=64)test_loss, test_acc = model.evaluate(test_images, test_labels)
print("Test accuracy: {:.2f}%".format(test_acc * 100))
4. 使用CNN模型进行预测
训练好CNN模型后,我们可以用它对新的图像数据进行预测。下面我们将随机选择一个测试图像,并使用模型进行预测。
python
复制代码
import numpy as np
import matplotlib.pyplot as pltindex = np.random.randint(0, len(test_images))
image = test_images[index]plt.imshow(image.reshape(28, 28), cmap="gray")
plt.show()predictions = model.predict(np.expand_dims(image, axis=0))
predicted_label = np.argmax(predictions)print("Predicted label:", predicted_label)
上述代码将展示一个随机选择的手写数字图像,并输出模型预测的结果。
这就是如何在Python中使用Keras创建和训练一个简单的CNN模型进行手写数字分类。在实际应用中,可以根据需求调整CNN模型的结构和参数以优化性能。
相关文章:
Python中的卷积神经网络(CNN)入门
卷积神经网络(Convolutional Neural Networks, CNN)是一类特别适用于处理图像数据的深度学习模型。在Python中,我们可以使用流行的深度学习库TensorFlow和Keras来创建和训练一个CNN模型。在本文中,我们将介绍如何使用Keras创建一个…...

vulnhub靶机HotelWW
下载地址:https://download.vulnhub.com/worstwesternhotel/HotelWW.ova 主机发现 目标142 端口扫描 服务版本扫描 漏洞扫描 看一下web 好好好这么玩改host 啥也没有先做个目录爆破 扫描太慢我就没看了看几个重点的txt(robot,config,readme&…...

ArcGIS Pro 标注牵引线问题
ArcGIS Pro 标注 模仿CAD坐标牵引线问题 右键需要标注的要素,进入标注属性。 选择背景样式 在这里有可以选择的牵引线样式 选择这一个,可以根据调整间距来进行模仿CAD标注样式。 此图为cad样式 此为调整后gis样式 此处可以调整牵引线的样式符号 …...

Java8的Stream最佳实践
从这一篇文章开始,我们会由浅入深,全面的学习stream API的最佳实践(结合我的使用经验),本想一篇写完,但写着写着发现需要写的内容太多了,所以分成一个系列慢慢来说。给大家分享我的经验的同时&a…...

Spark SQL函数定义
目录 窗口函数 SQL函数分类 Spark原生自定义UDF函数 Pandas的UDF函数 Apache Arrow框架基本介绍 基于Arrow完成Pandas DataFrame和Spark DataFrame互转 基于Pandas完成UDF函数 自定义UDF函数 自定义UDAF函数 窗口函数 分析函数 over(partition by xxx order by xxx [as…...

触摸屏监控双速电动机-PLC I/O电路设计
PLC的输入接线电路图 PLC的输入接线电路如图1-21所示。24VDC电源选用0.7mm2的棕色和蓝色软铜导线,弱电信号线用0.5~0.7mm2的黑色或者白色软铜导线。 PLC输入接线图 PLC的输出接线电路图 PLC的输出接线电路如图1-22所示。AC220V接触器型号为CJX2-12,线…...

idea中使用git提交代码报 Nothing To commit No changes detected
问题描述 在idea中右键,开始将变更的代码进行提交的时候,【Commit Directory】点击提交的时候 报 Nothing To commit No changes detected解决方案 在这里点击Test 看看是不是能下面显示git版本,不行的话 会显示一个 fix的字样,行…...
基于长短期神经网络的回归分析,基于LSTM的回归预测
目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 基于长短期神经网络LSTM的回归分析 MATALB代码:基于长短期神经网络的回归分析,基于LSTM的回归预测资源-CSDN文库 https://download.csdn.net/download/abc991835105/88184633 效果图 结果分析 展望 参考论文 背影 LSTM神经…...

mac查看maven版本报错:The JAVA_HOME environment variable is not defined correctly
终端输入mvn -version报错: The JAVA_HOME environment variable is not defined correctly, this environment variable is needed to run this program. Java环境变量的问题,打开bash_profile查看 open ~/.bash_profile export JAVA_8_HOME/Library/Java/JavaVirtualMachine…...

蓝桥杯省赛无忧 编程9
#include<bits/stdc.h> using namespace std; int main() {int n,k,ans0;cin>>n>>k;while(n--){int a;cin>>a;ansa&1;}if(ans&1) cout<<"Alice"<<\n;else cout<<"Bob"; return 0; }这个游戏是基于数…...
Spring data都包含哪些内容
Spring Data是一个涵盖了对多种数据库访问技术的支持的项目集合,旨在提供一致的数据访问方式,简化数据访问层(DAO层)的开发工作。Spring Data项目为许多不同类型的数据存储提供了易于使用的接口和模式。主要包括以下几个方面&…...
unity 利用Graphics.Blit来制作图片效果
c# 的代码 using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.UI;public class GraphicsBlitTest : MonoBehaviour {public Texture2D source;//原纹理public Material material;//效果材质public RawImage rawImage;// Sta…...

Linux ---- 小玩具
目录 一、安装: 1、佛祖保佑,永不宕机,永无bug 2、小火车 3、艺术字和其它 天气预报 艺术字 4、会说话的小牦牛 5、其他趣味图片 我爱你 腻害 英雄联盟 帅 忍 龙 你是猪 福 好运连连 欢迎 加油 想你 忘不了你 我错了 你…...
练习题 有奖问答
题目 问题描述 小蓝正在参与一个现场问答的节目。活动中一共有 3030 道题目, 每题只有答对和答错两种情况, 每答对一题得 10 分,答错一题分数归零。 小蓝可以在任意时刻结束答题并获得目前分数对应的奖项,之后不能再答任何题目。最高奖项需要 100 分,…...

php 文件操作
目录 1.file_xxx 2.fopen 1.file_xxx 文件读写的内容都是字符串数据格式 readfile(); //读取文件内容,并返回文件的长度 file_get_contents(文件路径); //读取文件。支持本地文件和远程文件url file_put_contents(文件路径, 内容); //写入数据,保存…...

Next-GPT: Any-to-Any Multimodal LLM
Next-GPT: Any-to-Any Multimodal LLM 最近在调研一些多模态大模型相关的论文,发现Arxiv上出的论文根本看不过来,遂决定开辟一个新坑《一页PPT说清一篇论文》。自己在读论文的过程中会用一页PPT梳理其脉络和重点信息,旨在帮助自己和读者快速了…...

Angular系列教程之MVC模式和MVVM模式
文章目录 MVC模式MVVM模式MVC与MVVM的区别Angular如何实现MVVM模式总结 在讨论Angular的时候,我们经常会听到MVC和MVVM这两种设计模式。这两种模式都是为了将用户界面(UI)和业务逻辑分离,使得代码更易于维护和扩展。在这篇文章中,我们将详细介…...
windows虚拟主机和linux虚拟主机的区别有哪些?
很多个人站长和中小企业在做网站的时候,会选择虚拟主机。虚拟主机用的操作系统多为Windows系统,很多人一提到操作系统立马联想到Windows系统。其实除了Windows系统外,还有很多的操作系统。其中Linux系统是其中的佼佼者。 1、操作系统 window…...

微信小程序(七)navigator点击效果
注释很详细,直接上代码 上一篇 新增内容: 1.默认效果 2.无效果 3.激活效果 源码: index.wxml //如果 <navigator url"/pages/logs/logs">跳转到log页面(默认) </navigator><navigator url&q…...

腾讯云服务器价格查询,2024更新
腾讯云服务器租用优惠价格表:轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三年、2核4G5M带宽218元一年,2核4G5M带宽756元三年、轻量4核8G12M服务器646元15个月;云服务器CVM S5实例2核2G配置280.8元一年、2核4G…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...

云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...

《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
【Ftrace 专栏】Ftrace 参考博文
ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...
STL 2迭代器
文章目录 1.迭代器2.输入迭代器3.输出迭代器1.插入迭代器 4.前向迭代器5.双向迭代器6.随机访问迭代器7.不同容器返回的迭代器类型1.输入 / 输出迭代器2.前向迭代器3.双向迭代器4.随机访问迭代器5.特殊迭代器适配器6.为什么 unordered_set 只提供前向迭代器? 1.迭代器…...