当前位置: 首页 > news >正文

C语言每日一题】——杨氏矩阵

【C语言每日一题】——倒置字符串😎

  • 前言🙌
    • 杨氏矩阵🙌
  • 总结撒花💞

追梦之旅,你我同行

   
😎博客昵称:博客小梦
😊最喜欢的座右铭:全神贯注的上吧!!!
😊作者简介:一名热爱C/C++,算法等技术、喜爱运动、热爱K歌、敢于追梦的小博主!

😘博主小留言:哈喽!😄各位CSDN的uu们,我是你的博客好友小梦,希望我的文章可以给您带来一定的帮助,话不多说,文章推上!欢迎大家在评论区唠嗑指正,觉得好的话别忘了一键三连哦!😘
在这里插入图片描述

前言🙌

    哈喽各位友友们😊,我今天又学到了很多有趣的知识现在迫不及待的想和大家分享一下!😘我仅已此文,和大家分享C语言每日一题】——杨氏矩阵~这里利用了数组指针的方法知识, 都是精华内容,可不要错过哟!!!😍😍😍

杨氏矩阵🙌

题目简述:
有一个数字矩阵,矩阵的每行从左到右是递增的,矩阵从上到下是递增的,请编写程序在这样的矩阵中查找某个数字是否存在。
要求: 时间复杂度小于O(N);

解题思路分析: 😍

  • 这里要求 时间复杂度小于O(N);所以利用常规的遍历一遍数组的方法是不满足的。因为遍历数组的时间复杂度是O(N)。
  • 首先认真读题,分析解题思路。因为矩阵的每行从左到右是递增的,矩阵从上到下是递增的,所以第一行的最后一个元素就是这一行的最大值,也是这个元素所在列的最小值。每一行的最后一个元素都是该行的最大值
  • 第一步就是拿第一行的最后一个元素与我们查找的元素进行大小比较。
  • 如果比我们的 k 要大,在我说明该元素一定在该行上,或者不存在 。让 j - - ,对该行逐个逐个进行两两比较 。
  • 如果比我们的 k 要小,在我说明该元素一定在下一行上,或者不存在 。让 i + + ,对该列逐个逐个进行两两比较 。
  • 然后循环重复上述操作,直到找到元素后,再跳出循环。-这里定义一个flag 变量目的是为了将没有找到元素的信息打印出来,这也是题目的要求之一**
  • 按照这种方法时间复杂度是小于O(N)。

画图分析: 😍
在这里插入图片描述

解题源码分享: 😍

#include<stdio.h>void Find(int(*a)[3], int row, int col,int k)
{int i = 0;int flag = 0;int j = col - 1;while ((i>= 0 && i <= row - 1) && (j >= 0 && j <= col - 1) ){if (*(*(a + i) + j) > k){j--;}else if(*(*(a + i) + j) < k){i++;}else{flag = 1;printf("找到了元素,其下标为:%d ,%d\n", i, j);break;}}if(flag == 0)printf("找不到该元素\n");
}int main()
{int a[3][3] = { {1,2,3},{4,5,6}, {7,8,9} };int row = sizeof(a[0]) / sizeof(int);int col = sizeof(a) / sizeof(a[0]);int k = 0;scanf("%d", &k);Find(a,row,col,k);return 0;
}

程序输出结果验证: 😊
在这里插入图片描述

总结撒花💞

   本篇文章旨在分享C语言详解C语言每日一题】——杨氏矩阵。希望大家通过阅读此文有所收获!😘如果我写的有什么不好之处,请在文章下方给出你宝贵的意见😊。如果觉得我写的好的话请点个赞赞和关注哦~😘😘😘

相关文章:

C语言每日一题】——杨氏矩阵

【C语言每日一题】——倒置字符串&#x1f60e;前言&#x1f64c;杨氏矩阵&#x1f64c;总结撒花&#x1f49e;&#x1f60e;博客昵称&#xff1a;博客小梦 &#x1f60a;最喜欢的座右铭&#xff1a;全神贯注的上吧&#xff01;&#xff01;&#xff01; &#x1f60a;作者简介…...

最佳iOS设备管理器imazing 2.16.9官网Mac/Windows下载电脑版怎么下载安装

imazing 2.16.9官网Mac/Windows下载电脑版是款针对苹果设备所打造的管理工具。iMazing为用户提供多种设备管理功能&#xff0c;每一位用户都能以自己的形式管理苹果设备。iMazing与苹果设备连接后&#xff0c;用户就可以轻松传输文件&#xff0c;浏览保存信息等。 应用介绍 iM…...

八大排序算法之堆排序的实现+经典TopK问题

目录 一.堆元素的上下调整接口 1.前言 2.堆元素向上调整算法接口 3.堆元素向下调整算法接口 二.堆排序的实现 1.空间复杂度为O(N)的堆排序(以排升序为例) 思路分析: 代码实现: 排序测试: ​时空复杂度分析: 2. 空间复杂度为O(1)的堆排序(以排降序为例) 将数组arr调…...

使用AppSmith(PagePlug )低代码平台快速构建小程序应用实践

文章目录一、入门&#xff08;一&#xff09;介绍&#xff08;二&#xff09;功能特性&#xff08;三&#xff09;体验一下&#xff08;四&#xff09;参考教程二、使用Appsmith构建商城微信小程序&#xff08;一&#xff09;说明&#xff08;二&#xff09;应用配置&#xff0…...

第52章 短信验证服务和登录的后端定义实现

1 Services.Messages.SmsValidate using Core.Domain.Messages; using Data; using Microsoft.EntityFrameworkCore; namespace Services.Messages { /// <summary> /// 【短信验证服务--类】 /// <remarks> /// 摘要&#xff1a; /// 通过类中的方法成员实…...

谷歌验证码的使用

1. 表单重复提交之验证码 1.1 表单重复提交三种常见情况 提交完表单。服务器使用请求转来进行页面跳转。这个时候&#xff0c;用户按下功能键 F5&#xff0c;就会发起最后一次的请求。造成表单重复提交问题。解决方法&#xff1a;使用重定向来进行跳转用户正常提交服务器&…...

Git学习入门(1)- git的安装与配置

title: git学习&#xff08;1&#xff09; - git的安装与配置CSDN: https://blog.csdn.net/jj6666djdbbd?typeblogBlog: https://helloylh.comGithub: https://github.com/luumodtags: gitabbrlink: 12001description: 本文主要讲解了git的安装&#xff0c;配置基本工作date: …...

【Python】使用Playwright断言方法验证网页和Web应用程序状态

作为测试框架&#xff0c;Playwright 提供了一系列断言方法&#xff0c;您可以使用它们来验证网页和 Web 应用程序的状态。在这篇博客中&#xff0c;田辛老师将介绍 Playwright 中可用的各种断言方法&#xff0c;并为每种方法提供示例。 assert page.url() expected_url &…...

libgdx导入blender模型

具体就是参考 官网 https://libgdx.com/wiki/graphics/3d/importing-blender-models-in-libgdx blender 教程可以看八个案例教程带你从0到1入门blender【已完结】 这里贴一下过程图。 1.初始环境搭建略过。 2.打开blender 选中摄像机和灯光&#xff0c;右键进行删除。 3.选中…...

【20230227】回溯算法小结

回溯法又叫回溯搜索法&#xff0c;是搜索的一种方式。回溯法本质是穷举所有可能。如果想让回溯法高效一些&#xff0c;可以加一些剪枝操作。回溯算法解决的经典问题&#xff1a;组合问题切割问题子集问题排列问题棋盘问题如何去理解回溯法&#xff1f;回溯法解决的问题都可以抽…...

centos安装rocketmq

centos安装rocketmq1 下载rocketmq二进制包2 解压二进制包3 修改broker.conf4 修改runbroker.sh和runserver.sh的JVM参数5 启动NameServer和Broker6 安装rockermq dashboard(可视化控制台)1 下载rocketmq二进制包 点击rocketmq二进制包下载地址&#xff0c;下载完成之后通过ft…...

汇编语言程序设计(二)之寄存器

系列文章 汇编语言程序设计&#xff08;一&#xff09; 寄存器 在学习汇编的过程中&#xff0c;我们经常需要操作寄存器&#xff0c;那么寄存器又是什么呢&#xff1f;它是用来干什么的&#xff1f; 它有什么分类&#xff1f;又该如何操作&#xff1f;… 你可能会有许多的…...

华为OD机试Golang解题 - 单词接龙 | 独家

华为Od必看系列 华为OD机试 全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典文章目录 华为Od必看系列使用说明本期题目…...

Elasticsearch的搜索命令

Elasticsearch的搜索命令 文章目录Elasticsearch的搜索命令数据准备URI Searchq&#xff08;查询字符串&#xff09;analyzer&#xff08;指定查询字符串时使用的分析器&#xff09;df&#xff08;指定查询字段&#xff09;_source&#xff08;指定返回文档的字段&#xff09;s…...

为什么人们宁可用Lombok,也不把成员设为public?

目录专栏导读一、从零了解JavaBean1、基本概念2、JavaBean的特征3、JavaBean的优点二、定义最简单的JavaBean三、思考一个问题&#xff0c;为何属性是private&#xff0c;然后用get/set方法&#xff1f;四、下面系统的分析以下&#xff0c;why?五、不和谐的声音&#xff0c;禁…...

【Redis】Redis 如何实现分布式锁

Redis 如何实现分布式锁1. 什么是分布式锁1.1 分布式锁的特点1.2 分布式锁的场景1.3 分布式锁的实现方式2. Redis 实现分布式锁2.1 setnx expire2.2 set ex px nx2.3 set ex px nx 校验唯一随机值&#xff0c;再删除2.4 Redisson 实现分布式锁1. 什么是分布式锁 分布式锁其实…...

C++ 断言

文章目录前言assertstatic_assert前言 断言(Assertion)是一种常用的编程手段&#xff0c;用于排除程序中不应该出现的逻辑错误。它是一种很好的Debug工具。其作用是判断表达式是否为真。C提供了assert和static_assert来进行断言。在C库中也有断言&#xff0c;其中断言与C的相同…...

C++修炼之练气期第五层——引用

目录 1.引用的概念 2.引用的性质 3.常量引用 4.使用场景 1.作参数 2.作返回值 5.传值与传引用的效率比较 6.值和引用作为返回值的性能比较 7.引用与指针 指针与引用的不同点 要说C语言中哪个知识点最难学难懂&#xff0c;大部分人可能和我一样的答案——指针。C既然…...

从企业数字化发展的四个阶段,看数字化创新战略

《Edge: Value-Driven Digital Transformation》一书根据信息技术与企业业务发展的关系把企业的数字化分为了四个阶段&#xff1a; 技术与业务无关技术作为服务提供者开始合作科技引领差异化优势以技术为业务核心 下图展示了这四个阶段的特点&#xff1a; 通过了解和分析各个…...

vulnhub five86-1

总结:私钥登录&#xff0c;隐藏文件很多 目录 下载地址 漏洞分析 信息收集 网站渗透 爆破密码 提权 下载地址 Five86-1.zip (Size: 865 MB)Download (Mirror): https://download.vulnhub.com/five86/Five86-1.zip使用&#xff1a;下载以后打开压缩包&#xff0c;使用vm直…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join

纯 Java 项目&#xff08;非 SpringBoot&#xff09;集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...