当前位置: 首页 > news >正文

C语言-算法-最小生成树

【模板】最小生成树

题目描述

如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz

输入格式

第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。

接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi

输出格式

如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz

样例 #1

样例输入 #1

4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3

样例输出 #1

7

提示

数据规模:

对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N5 M ≤ 20 M\le 20 M20

对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N50 M ≤ 2500 M\le 2500 M2500

对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N500 M ≤ 1 0 4 M\le 10^4 M104

对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1N5000 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1M2×105 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1Zi104

样例解释:

所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7

代码

#include <stdio.h>
#include <stdlib.h>
#define MAXN 300000
#define MAXM 300000
typedef struct // 定义边的结构体
{int u, v, w;
}Edge;
Edge edges[MAXM]; // 存储所有的边
int pa[MAXN]; // 并查集数组,用于判断两个节点是否在同一棵树中
int N, M; // N是节点数,M是边数
int cmp(Edge a, Edge b); // 边的比较函数,按照边的权重从小到大排序
int find(int x); // 并查集的查找函数,用于查找节点x的根节点
int kruskal(); // Kruskal算法函数int main(int argc, char *argv[])
{int i;scanf("%d %d", &N, &M); // 读取节点数和边数for (i = 0; i < M; i++){scanf("%d %d %d", &edges[i].u, &edges[i].v, &edges[i].w);}int res = kruskal(); // 调用Kruskal算法计算最小生成树的权重if (res == -1) // 如果图不连通{printf("orz\n");}else{printf("%d\n", res);}return 0;
}int cmp(Edge a, Edge b) // 边的比较函数,按照边的权重从小到大排序
{return (a.w - b.w);
}int find(int x) // 并查集的查找函数,用于查找节点x的根节点
{while (pa[x] != x){x = pa[x];}return x; 
}int kruskal() // Kruskal算法函数
{int i, j;for (i = 0; i < M; i++) // 将所有的边按照从小到大排序{for (j = i + 1; j < M; j++){if (cmp(edges[i], edges[j]) > 0){Edge temp = edges[i];edges[i] = edges[j];edges[j] = temp;}}}for (i = 1; i <= N; i++) // 初始化并查集{pa[i] = i;}int res = 0; // 存储最小生成树的权重int cnt = 0; // 存储当前已经选择的边的数量for (i = 0; i < M; i++) // 遍历所有的边{int u = find(edges[i].u); // 边的一个节点int v = find(edges[i].v); // 边的另一个节点// 如果两个节点不在同一棵树中,说明这条边可以添加到最小生成树中if (u != v){res += edges[i].w; // 更新最小生成树的权重pa[u] = v; // 合并两棵树cnt++; // 更新已经选择的边的数量}}if (cnt != N - 1) // 如果选择边的数量小于N - 1,说明图不连通{return -1;}return res; // 返回最小生成树的权重
}

相关文章:

C语言-算法-最小生成树

【模板】最小生成树 题目描述 如题&#xff0c;给出一个无向图&#xff0c;求出最小生成树&#xff0c;如果该图不连通&#xff0c;则输出 orz。 输入格式 第一行包含两个整数 N , M N,M N,M&#xff0c;表示该图共有 N N N 个结点和 M M M 条无向边。 接下来 M M M 行…...

android 扫描某个包下的所有类

注意事项 如果在用Android Studio开发过程中&#xff0c;如果新增了类&#xff0c;扫描不到。只能把APP卸载了&#xff0c;才能扫描到。 可能是Instance Run 的影响。 后面研究一下这篇文章&#xff0c;看看能不能解决 Android 遍历Apk下的所有类文件 package com.trs.nmip.…...

远程ssh 不通的原因之一

背景&#xff1a;我都想大喊一声&#xff0c;我上网是通的&#xff0c; ping网址是通的&#xff0c;ping www.baidu.com 是通的&#xff0c; 怎么都远程不了&#xff0c;报超时&#xff1b;嘿&#xff0c; 别人远程就能行。我都想挠头了。 目录 1. 先 ping 自己&#xff0c;…...

wamp集成环境部署

Windows下Apache服务器搭建 第一步&#xff1a;下载Windows下的最新ZIP压缩包 推荐下载网址&#xff1a;http://www.apachelounge.com/download/ 为了让Apache服务器发挥更好的性能&#xff0c;请根据自己的系统选择下载&#xff0c;如果不清楚自己的系统是64位还是32位&am…...

使用antd design pro 及后端nodejs express 结合minio进行文件的上传和下载管理

使用Ant Design Pro前端框架结合Node.js Express后端服务以及MinIO作为对象存储&#xff0c;实现文件上传和下载管理的基本步骤如下&#xff1a; 1. 安装所需依赖 在Node.js Express项目中安装minio客户端库&#xff1a; npm install minio --save 在前端项目&#xff08;假…...

Unity常用的优化技巧集锦

Unity性能优化是面试的时候经常被问道的一些内容&#xff0c;今天给大家分享一些常用的Unity的优化技巧和思路&#xff0c;方便大家遇到问题时候参考与学习。 对啦&#xff01;这里有个游戏开发交流小组里面聚集了一帮热爱学习游戏的零基础小白&#xff0c;也有一些正在从事游…...

c++动态调用dll

在C中动态调用DLL&#xff08;动态链接库&#xff09;可以使用Windows API函数。以下是一个简单的示例&#xff0c;演示如何动态加载和调用DLL中的函数&#xff1a; #include <windows.h> #include <iostream>int main() { // 加载DLL HMODULE hModule LoadLibrar…...

使用Python自动化操作手机,自动执行常见任务,例如滑动手势、呼叫、发送短信等等

使用Python自动化操作手机,自动执行常见任务,例如滑动手势、呼叫、发送短信等等。 此自动化脚本将帮助你使用 Python 中的 Android 调试桥 (ADB) 自动化你的智能手机。下面我将展示如何自动执行常见任务,例如滑动手势、呼叫、发送短信等等。 您可以了解有关 ADB 的更多信息,…...

E - Souvenir(图论典型例题)

思路&#xff1a;对于有很多询问的题&#xff0c;一般都是先初始化。我们求出每个点到其他点的最短路径以及相同路径下最大的价值和即可。 代码&#xff1a; #include <bits/stdc.h> #define pb push_back #define a first #define b second using namespace std; type…...

【SpringBoot篇】添加富文本编辑器操作

文章目录 &#x1f354;使用步骤⭐首先我们需要安装富文本编辑器⭐在<script>中引入富文本编辑器⭐富文本图片上传接口⭐初始化富文本编辑器⭐调用 初始化富文本编辑器的方法&#x1f388;新增&#x1f388;编辑&#x1f388;保存 ⭐添加按钮⭐实现viewEditor函数&#x…...

前台vue配置

前台 vue环境 1.傻瓜式安装node: 官网下载&#xff1a;https://nodejs.org/zh-cn/2.安装cnpm: >: npm install -g cnpm --registryhttps://registry.npm.taobao.org3.安装vue最新脚手架: >: cnpm install -g vue/cli注&#xff1a;如果2、3步报错&#xff0c;清除缓…...

牛客周赛 Round 18 解题报告 | 珂学家 | 分类讨论计数 + 状态DP

前言 整体评价 前三题蛮简单的&#xff0c;T4是一个带状态的DP&#xff0c;这题如果用背包思路去解&#xff0c;不知道如何搞&#xff0c;感觉有点头痛。所以最后还是选择状态DP来求解。 欢迎关注 珂朵莉 牛客周赛专栏 珂朵莉 牛客小白月赛专栏 A. 游游的整数翻转 这题最好…...

CentOS防火墙基本操作

CentOS操作系统中的防火墙可以使用firewalld或iptables来进行配置。 firewalld&#xff08;默认&#xff09;&#xff1a; 查看当前状态&#xff1a;systemctl status firewalld 开启/关闭防火墙服务&#xff1a;sudo systemctl start/stop firewalld 设置开机自动启动/不启…...

Shell脚本的编程规范和变量类型

一. 了解编程 1.程序编程风格 面向过程语言 开发的时候 需要一步一步执行 问题规模小&#xff0c;可以步骤化&#xff0c;按部就班处理 以指令为中心&#xff0c;数据服务于指令 C&#xff0c;shell 面向对象语言 开发的时候 将任务当成一个整体 将编程看成是一个…...

C++面试:跳表

目录 跳表介绍 跳表的特点&#xff1a; 跳表的应用场景&#xff1a; C 代码示例&#xff1a; 跳表的特性 跳表示例 总结 跳表&#xff08;Skip List&#xff09;是一种支持快速搜索、插入和删除的数据结构&#xff0c;具有相对简单的实现和较高的查询性能。下面是跳表…...

掌握C++20的革命性特性:Concepts

掌握C20的革命性特性&#xff1a;Concepts C20 的新特性 C20 引入了 Concepts&#xff0c;这是一种用于限制类和函数模板的模板类型和非类型参数的命名要求。Concepts 是作为编译时评估的谓词&#xff0c;用于验证传递给模板的模板参数。Concepts 的主要目的是使模板相关的编…...

win11开机后频繁刷新桌面,任务栏不显示,文件资源管理器explorer报错ntdll.dll

win11 开机后桌面频繁刷新&#xff0c;cpu 暴涨&#xff0c;任务栏不出现。 不知道是安装了什么软件还是系统升级造成的&#xff0c;好长时间不重启电脑了&#xff0c;然后重启了下电脑。 结果就是&#xff1a; 现象描述 重启后 输入密码进入后 变得巨慢。好久才进入的桌面。…...

解决Git添加.gitignore文件后不生效的问题

1. 问题描述 如上图所示&#xff0c;在已存在.gitignore文件且已经提交过的Git管理的项目中&#xff0c;其中.class、.jar文件以及.idea目录内的内容全部都还是被Git管理了&#xff0c;可见.gitignore文件并没有生效。 2. 原因发现 .gitignore文件只能作用于 Untracked Files…...

Shell Linux学习笔记

注意&#xff1a;该文章摘抄之百度&#xff0c;仅当做学习笔记供小白使用&#xff0c;若侵权请联系删除&#xff01; 目录 什么是shell ? Linux正则匹配 grep tar与unzip echo history 重定向 shell 单双引号 位置参数 预定义变量 运算 正则表达式 字符截取命令 …...

kingbase常用SQL总结之锁等待信息

锁信息与等待事件 分析kingbase&#xff08;pg&#xff09;数据库锁等待、死锁时需要我们准确的定位等锁或者死锁相关的事务。关于获取锁等待信息或者死锁信息已有经典的SQL可以直接使用&#xff0c;但是需要我们先了解sql语句获取的每个字段的意义。 获取到锁等待事务不能完全…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...