当前位置: 首页 > news >正文

如何判断有向无环图:构造有向无环图

拓扑序列:可以用来判断一个有向图是否有环!
拓扑排序可以判断有向图是否存在环。我们可以对任意有向图执行上述过程,在完成后检查A序列的长度。 若A序列的长度小于图中点的数量,则说明某些节点未被遍历,进而说明图中存在环。

拓扑排序是结合bfs框架来实现的,每次从入度为0的点开始搜索;所以需要先预处理出来所有入度为0的节点,入队,然后去遍历这些入度为0的点,每次将这些点进行逻辑上的删除,然后更新它的直接邻接点的入度,如果直接邻接点的入度减为0,则将其也入队!

  1. 建立一个队列,负责按照拓扑序列存取节点。
  2. 预处理所有点的入度d[i], 起初把所有入度为0的点入队。
  3. 取出队头节点t, 把 t 加入拓扑序列 – 队列q的末尾。
  4. 对于从x出发的每条边x->y,y即为x的直接邻接点, 把d[y]−−。若被减为0, 则把y入队。
  5. 重复第3∼4步直到队列为空, 此时队列q即为所求。

本题中心思想: 用 已确定方向的边 建好图后,给 未确定方向的边 设置方向 这部操作其实就是 加边 行为。如果当前图中已经存在 环
了,那么加额外的边是不能去掉这个 环 的(除非删掉环上的某一条边) 大致就是以上意思

由于我们只建立了有向边,而无向边的话是没有建立的,所以意味着建立的有向图不会经过所有的顶点,,那为什么生成的拓扑序列 就能够确保经过所有的顶点呢?

因为属于不同连通块亦能构成拓扑序,拓扑排序本身不会被局限在一个连通块内

对于无向边的节点,我们需要知道它在拓扑序列中的位置,而拓扑序列我们已经预处理出来了,只需要求出拓扑序列里,含无向边的两个点,让它们按照拓扑序列从前往后指向,就必然不会破坏拓扑序列并且合法!

代码:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <queue>using namespace std;const int N = 2e5 + 10, M = N;
int T, n, m;
int top[N], pos[N];     //存放拓扑序!
int h[N], e[M], ne[M], d[N], idx;
struct Edge{int a, b;
}edge[M];void add (int a, int b)
{e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}bool topsort ()
{queue<int> q;   //定义一个队列!//预处理出来所有入度为0的节点:for (int i=1; i <= n; i ++)if (!d[i])q.push(i);int cnt = 0;while (q.size()){auto t = q.front();q.pop();top[cnt ++] = t;    //存放拓扑序列! for (int i=h[t]; ~i; i = ne[i]){int j = e[i];d[j] --;if (d[j] == 0)q.push(j);}}//判断存放的元素个数:if (cnt < n) return false;else return true;
}int main()
{cin >> T;while (T --){int cnt = 0;//初始化:memset (h, -1, sizeof (h));memset (d, 0, sizeof (d));  //度数数组!idx = 0;scanf ("%d%d", &n, &m);while (m --){int t, x, y;scanf("%d%d%d", &t, &x, &y);if (!t) edge[cnt ++] = {x, y};else{   //即为有向边!add (x, y);d[y] ++;}}if (!topsort())    //利用拓扑序列判断是否有环puts("NO");else{puts("YES");for (int i=1; i <= n; i ++) //输出拓扑序列:for (int j=h[i]; ~j; j = ne[j])printf ("%d %d\n", i, e[j]);    //指代有向边!//记录每个点的位置://pos[i]:表示的是i号节点在拓扑序列中的位置for (int i=0; i < n; i ++) pos[top[i]] = i;for (int i=0; i < cnt; i ++){int a = edge[i].a, b = edge[i].b;if (pos[a] > pos[b]) swap(a, b);printf ("%d %d\n", a, b);}}}return 0;
}```

相关文章:

如何判断有向无环图:构造有向无环图

拓扑序列&#xff1a;可以用来判断一个有向图是否有环&#xff01; 拓扑排序可以判断有向图是否存在环。我们可以对任意有向图执行上述过程&#xff0c;在完成后检查A序列的长度。 若A序列的长度小于图中点的数量&#xff0c;则说明某些节点未被遍历&#xff0c;进而说明图中存…...

【2022.1.3】手脱压缩壳练习(含练习exe)

【2022.1.3】手脱压缩壳练习&#xff08;含练习exe&#xff09; 文章目录【2022.1.3】手脱压缩壳练习&#xff08;含练习exe&#xff09;0、简介1、单步跟踪法&#xff08;#&#xff09;方法介绍&#xff08;0&#xff09;练习exe下载&#xff08;1&#xff09;、查看源程序&am…...

【异或哈希】CF855 div3 F

感觉这道题跟之前有一题特别像&#xff0c;都是异或哈希感觉这种题应该很典&#xff0c;记录一下(66条消息) Codeforces Round #841 (Div. 2) and Divide by Zero【异或差分动态map维护】 2022 C. Even Subarrays_lamentropetion的博客-CSDN博客Problem - F - Codeforces题意&a…...

深度学习|改进两阶段鲁棒优化算法i-ccg

目录 1 主要内容 2 改进算法 2.1 CC&G算法的优势 2.2 i-CCG算法简介 3 结果对比 1 主要内容 自从2013年的求解两阶段鲁棒优化模型的列和约束生成算法&#xff08;CC&G&#xff09;被提出之后&#xff0c;基本没有实质性的创新&#xff0c;都是围绕该算法在各个领…...

C++11轻松打印本地时间

C11之前&#xff0c;想要获取时间并对其打印是有些困难的&#xff0c;因为C并没有标准时间库。想要对时间进行统计就需要调用C库&#xff0c;并且我们要考虑这样的调用是否能很好的封装到我们的类中。 C11之后&#xff0c;STL提供了 chrono 库&#xff0c;其让对时间的操作更加…...

Eureka - 总览

文章目录前言架构注册中心 Eureka Server服务提供者 Eureka Client服务消费者 Eureka Client总结资源前言 微服务&#xff08;Microservices&#xff0c;一种软件架构风格&#xff09;核心的组件包括注册中心&#xff0c;随着微服务的发展&#xff0c;出现了很多注册中心的解决…...

【算法设计-枚举、分治】素数、约数、质因数分解

文章目录1. 素数判定2. 素数筛选法3. 质因数分解4. 求一个数的约数5. 求两个数的最大公约数&#xff08;GCD&#xff09;6. 求两个数的最小公倍数&#xff08;LCM&#xff09;1. 素数判定 判定从 2 到sqrt(n)依次能否把 n 整除&#xff0c;若存在可以整除的数则说明 n 不是素数…...

【第十四届蓝桥杯】第三期模拟赛B组C++题解(待修正+持续更新-ing)

文章目录写在前面一、找最小数题目描述解题报告1、大体思路2、代码详解二、求列名题目描述解题报告1、大体思路2、代码详解三、求日期数题目描述解题报告1、大体思路2、代码详解四、取数题目描述解题报告1、大体思路2、代码详解五、最大连通分块题目描述解题报告1、大体思路2、…...

线程池和ThreadLocal详解

线程池和ThreadLocal详解线程池池化模式&#xff1a;线程池里的线程数量设定为多少比较合适?添加线程规则&#xff1a;实现原理&#xff1a;线程池实现任务复用的原理线程池状态&#xff1a;Executors 创线程池工具类手动创建&#xff08;更推荐&#xff09;&#xff1a;自动创…...

[深入理解SSD系列综述 1.7] SSD固态存储市场发展分析与预测_固态存储技术发展方向(2022to2023)

前言 自2020年疫情爆发以来,远程办公、网上教育、流媒体等等应用引爆对消费电子及云服务的需求增长,全球数字化转型加速,带来了两年的闪存风光时刻。然而,进入2022年,在俄乌冲突、疫情重燃、通胀上升等一系列事件冲击下,全球经济下行风险加剧,对智能手机、PC等科技产品的…...

【2021.12.25】ctf逆向中常见加密算法和编码识别

【2021.12.25】ctf逆向中常见加密算法和编码识别&#xff08;含exe及wp&#xff09; 文章目录【2021.12.25】ctf逆向中常见加密算法和编码识别&#xff08;含exe及wp&#xff09;0、前言1、基础加密手法2、base64&#xff08;1&#xff09;原理&#xff1a;&#xff08;2&#…...

【数据结构初阶】堆排序

目录 前言 概念 堆排序的实现 1.建堆 &#xff08;1&#xff09;堆向上调整算法 &#xff08;2&#xff09;堆的向下调整算法 2. 利用堆删除思想来进行排序 3.堆排序的时间复杂度 4.源码 总结 前言 前边我们学习了堆的实现&#xff0c;对堆的每个接口都进行了详细的讲…...

Day5: platformDriver-1

Platform Driver (1) Linux kernel中大部分设备可以归结为平台设备&#xff0c;因此大部分的驱动是平台驱动&#xff08;patform driver&#xff09; 什么是平台设备 平台设备是linux的设备模型中一类设备的抽象。 内核中的描述&#xff1a; Platform devices are devices t…...

开发手册——一、编程规约_7.控制语句

这篇文章主要梳理了在java的实际开发过程中的编程规范问题。本篇文章主要借鉴于《阿里巴巴java开发手册终极版》 下面我们一起来看一下吧。 1. 【强制】在一个 switch 块内&#xff0c;每个 case 要么通过 break / return 等来终止&#xff0c;要么注释说明程序将继续执行到哪…...

python每日学9 : windows上配置gitee的远程仓库,git的初步使用

在开发中&#xff0c;如果遇到复杂的项目&#xff0c;使用版本控制是非常有必要的&#xff0c;如果涉及到多端开发&#xff0c;那么还需要使用远程仓库。本文作个简单记录&#xff0c;记录下git初步使用。 1 下载与安装 git还有几个ui版本&#xff0c;但是开始使用的话&#…...

精确率与召回率,ROC曲线与PR曲线

精确率与召回率&#xff0c;ROC曲线与PR曲线 在机器学习的算法评估中&#xff0c;尤其是分类算法评估中&#xff0c;我们经常听到精确率(precision)与召回率(recall)&#xff0c;ROC曲线与PR曲线这些概念&#xff0c;那这些概念到底有什么用处呢&#xff1f; 首先&#xff0c…...

现代操作系统——Linux架构与学习

小白的疑惑 在我决定从事嵌入式&#xff08;应用层&#xff09;方面的工作时&#xff0c;我查询了大量资料该如何学习&#xff0c;几乎所有观点不约而同的都指向了学习好Linux&#xff0c;大部分工作都是在Linux环境下来进行工作的。于是我雄心勃勃的去下载Linux&#xff0c;可…...

中文代码82

PK 嘚釦 docProps/PK 嘚釦羸 r docProps/app.xml潙蚽?勶曻Q顗濔S? 錞礖剅D柍珘m?鳞?ぷ辷f硌?2?upc厭Y樐8 rU y搪m眾&a?珪?紓 玺鶋瑣襚? ?i嘲rN?布倖儇?攊橌??嚗猝)芻矂2吟腊K湞?CK臶>鸘\?ΔF滋齢q旮T?桀?;偉 A軥v蕯朾偤佷3?е…...

顺序表(一篇带你掌握顺序表)

目录 一、顺序表是什么 1.1 概念 1.2 分类 1.3 结构 二、顺序表的基本操作 2.1 前绪准备 2.2 初始化 2.3 扩容 2.5 尾插 2.6 打印 2.7 尾删 2.8 头插 2.9 头删 2.10 在pos位置插入 2.11 删除pos位置的数据 2.12 查找 三、完整代码 3.1 Test.c文件 3.2 SeqList.h…...

【SpringCloud】SpringCloud教程之Feign实战

目录前言SpringCloud Feign远程服务调用一.需求二.两个服务的yml配置和访问路径三.使用RestTemplate远程调用(order服务内编写)四.构建Feign(order服务内配置)五.自定义Feign配置(order服务内配置)六.Feign配置日志(oder服务内配置)七.Feign调优(order服务内配置)八.抽离Feign前…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...