kmp算法
前缀函数
π[i]=maxk=0,⋯,i{k∣s[0,⋯,k−1]==s[i−(k−1),⋯,i]}\pi\left[i\right] = \max\limits_{k = 0,\cdots, i}\left\{k|s\left[0,\cdots,k-1\right] == s\left[i-\left(k-1\right) ,\cdots, i\right]\right\} π[i]=k=0,⋯,imax{k∣s[0,⋯,k−1]==s[i−(k−1),⋯,i]}
简单来说就是最长的相等的真前缀与真后缀的长度
字符串前缀函数求法
我们要求整个字符串每一个位置的前缀函数
最暴力的做法就是枚举,但是这样时间复杂度O(n3)O\left(n^3\right)O(n3)
优化
优化1
计算π[i+1]\pi\left[i+1\right]π[i+1]的时候,不需要从iii枚举到000,可以从π[i]+1\pi\left[i\right] +1π[i]+1枚举到000
也就是说前缀函数至多增加1
证明:
由定义s[0,⋯,π[i]−1]==s[i−(π[i]−1),⋯,i]s\left[0,\cdots,\pi\left[i\right]-1\right] == s\left[i-\left(\pi\left[i\right]-1\right) ,\cdots, i\right]s[0,⋯,π[i]−1]==s[i−(π[i]−1),⋯,i]
并且∀k≥1,s[0,⋯,π[i]−1+k]≠s[i−(π[i]−1)−k,⋯,i]\forall k \ge 1,s\left[0,\cdots,\pi\left[i\right]-1+k\right] \neq s\left[i-\left(\pi\left[i\right]-1\right)-k ,\cdots, i\right]∀k≥1,s[0,⋯,π[i]−1+k]=s[i−(π[i]−1)−k,⋯,i]
如果π[i+1]=π[i]+1+k\pi\left[i+1\right] = \pi\left[i\right] +1 + kπ[i+1]=π[i]+1+k,其中k≥1k\ge 1k≥1
那么意味着s[0,⋯,π[i]+k]==s[i+1−(π[i]+k+1−1),⋯,i+1]s\left[0,\cdots,\pi\left[i\right] + k\right] == s\left[i + 1-\left(\pi\left[i\right] + k +1-1\right) ,\cdots, i+1\right]s[0,⋯,π[i]+k]==s[i+1−(π[i]+k+1−1),⋯,i+1]
于是s[0,⋯,π[i]+k−1]==s[i−(π[i]+k−1),⋯,i]s\left[0,\cdots,\pi\left[i\right] + k - 1\right] == s\left[i-\left(\pi\left[i\right] + k -1\right) ,\cdots, i\right]s[0,⋯,π[i]+k−1]==s[i−(π[i]+k−1),⋯,i]
矛盾
如果s[π[i]]==s[i+1]s\left[\pi\left[i\right]\right] == s\left[i+1\right]s[π[i]]==s[i+1],那么π[i+1]=π[i]+1\pi\left[i+1\right] = \pi\left[i\right] +1π[i+1]=π[i]+1
优化2
如果s[π[i]]≠s[i+1]s\left[\pi\left[i\right]\right] \neq s\left[i+1\right]s[π[i]]=s[i+1]
这时候我们需要找到了一个j<π[i]j < \pi\left[i\right]j<π[i]
使得s[0,⋯,j−1]==s[i−j+1,⋯,i]s\left[0,\cdots,j-1\right] == s\left[i-j+1,\cdots,i\right]s[0,⋯,j−1]==s[i−j+1,⋯,i]
由于s[0,⋯,π[i]−1]==s[i−(π[i]−1),⋯,i]s\left[0,\cdots,\pi\left[i\right]-1\right] == s\left[i-\left(\pi\left[i\right]-1\right) ,\cdots, i\right]s[0,⋯,π[i]−1]==s[i−(π[i]−1),⋯,i]
并且
s[0,⋯,π[π[i]−1]−1]==s[π[i]−1−(π[π[i]−1]−1),⋯,i]s\left[0,\cdots,\pi\left[\pi\left[i\right]-1\right]-1\right] == s\left[\pi\left[i\right]-1-\left(\pi\left[\pi\left[i\right]-1\right]-1\right) ,\cdots, i\right]s[0,⋯,π[π[i]−1]−1]==s[π[i]−1−(π[π[i]−1]−1),⋯,i]
也就是说maxj=π[i]−1\max j = \pi\left[i\right]-1maxj=π[i]−1
简单来说就是前面那一段和后面那一段是一样的,那么我们意味着前后缀也一样,那么最长的前缀就是前缀函数

所以我们的过程就是
j(0)=π[i]j^{\left(0\right)} = \pi\left[i\right]j(0)=π[i]
j(i)=π[j(i−1)−1]j^{\left(i\right)}=\pi\left[j^{\left(i-1\right)}-1\right]j(i)=π[j(i−1)−1]
直到s[j(i)]==s[i+1]s\left[j^{\left(i\right)}\right] == s\left[i+1\right]s[j(i)]==s[i+1]或者j(i)=0j^{\left(i\right)} =0j(i)=0
时间复杂度O(n)O\left(n\right)O(n)
kmp
kmp是一个字符串匹配的算法
主要原理就是,如果某一个位置不相等了,就滑到前缀和后缀相等的地方
那么求前缀和后缀相等,我们可以用前缀函数
为了方便,也可以将前缀函数整体向右移一位
因为是iii这个位置不相等,只能找π[i−1]\pi\left[i-1\right]π[i−1]
代码
因为这里用的是数组,所以最好直接存一下字符串长度,不然strlen是O(n)O\left(n\right)O(n)
#include<cstdio>
#include<cstring>const int N = 105;
char pattern[N];//模式串
int len_p;
char text[N];//待匹配串
int len_t;
int nxt[N] = { -1 };//前缀函数void get_next() {int i = 0, j = nxt[0] = -1;while (i < len_p) {if (j == -1 || pattern[i] == pattern[j]) {++i;++j;nxt[i] = j;}else {j = nxt[j];}}
}int kmp() {int i = 0, j = 0;get_next();while (i < len_t && j < len_p) {if (j == -1 || text[i] == pattern[j]) {++j;++i;}else {j = nxt[j];}}if (j == len_p)return i - j;return -1;
}
洛谷3375
如果匹配了,那么要回到π[lenpattern]\pi\left[len_{pattern}\right]π[lenpattern]
#include<cstdio>
#include<cstring>const int N = 1e6 + 5;
char pattern[N];//模式串
int len_p;
char text[N];//待匹配串
int len_t;
int nxt[N];//前缀函数void get_next() {int i = 0, j = nxt[0] = -1;while (i < len_p) {if (j == -1 || pattern[i] == pattern[j]) {++i;++j;nxt[i] = j;}else {j = nxt[j];}}
}void kmp() {int i = 0, j = 0;get_next();while (i < len_t) {if (j == -1 || text[i] == pattern[j]) {++i;++j;if (j == len_p) {printf("%d\n", i - j + 1);j = nxt[j];}}else {j = nxt[j];}}
}int main() {scanf("%s%s", text, pattern);len_p = strlen(pattern);len_t = strlen(text);kmp();for (int i = 1; i <= len_p; ++i) {if (i > 1)printf(" ");printf("%d", nxt[i]);}printf("\n");return 0;
}
字符串周期与border
对于字符串sss和0<p≤∣s∣0 < p \le \left|s\right|0<p≤∣s∣,若s[i]==s[i+p]s\left[i\right] == s\left[i + p\right]s[i]==s[i+p]对所有i∈[0,∣s−1∣−p−1]i \in \left[0,\left|s - 1\right| - p - 1\right]i∈[0,∣s−1∣−p−1]成立,则称ppp是sss的周期
对于字符串sss和0≤r<∣s∣0 \le r < \left|s\right|0≤r<∣s∣,若sss长度为rrr的前缀和长度为rrr的后缀相等,则称sss长度为rrr的前缀是sss的border
sss有长度为rrr的border可以推出∣s∣−r\left|s\right| - r∣s∣−r是sss的周期
由前缀函数,可以得到sss所有的的border长度,即π[∣s∣−1],π[π[∣s∣−1]−1],⋯\pi\left[\left|s\right|-1\right],\pi\left[\pi\left[\left|s\right|-1\right]-1\right],\cdotsπ[∣s∣−1],π[π[∣s∣−1]−1],⋯
codeforce432D
统计每一个border出现的次数
首先求出前缀函数
接着建立一个数组cntcntcnt,cnt[i]cnt[i]cnt[i]表示s[0,⋯,i]s\left[0,\cdots,i\right]s[0,⋯,i]出现的次数
初始化cnt[i]=1cnt[i] = 1cnt[i]=1
然后从后往前遍历,cnt[π[i]]+=cnt[i]cnt[\pi\left[i\right]] +=cnt[i]cnt[π[i]]+=cnt[i](建议自己模拟一下
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;const int N = 1e5 + 5;
char s[N];
int len_s;
int nxt[N];int cnt[N];
void get_next() {int i = 0, j = nxt[0] = -1;while (i < len_s) {if (j == -1 || s[i] == s[j]) {++i;++j;nxt[i] = j;}else {j = nxt[j];}}
}int main() {scanf("%s", s);len_s = strlen(s);get_next();fill(cnt, cnt + len_s + 1, 1);for (int i = len_s; i > 0; --i) {cnt[nxt[i]] += cnt[i];}stack<int> st;int t = len_s;while (t > 0) {st.push(t);t = nxt[t];}printf("%d\n", st.size());while (!st.empty()) {int temp = st.top();st.pop();printf("%d %d\n", temp, cnt[temp]);}return 0;
}
字符串压缩
给定一个长度为nnn得字符串sss,我们希望找到最短得字符串ttt,使得s=t∗s = t*s=t∗
令k=n−π[n−1]k = n - \pi\left[n-1\right]k=n−π[n−1],如果k∣nk\mid nk∣n,则t=s[0,1,⋯,k]t=s\left[0,1,\cdots, k\right]t=s[0,1,⋯,k]就是答案
否则不存在有效的压缩
证明:
如果k∣nk\mid nk∣n,则字符串可以分成长度为kkk的若干块,
由前缀函数,最后一块等于倒数第二块,进而倒数第二块等于倒数第三块,以此类推
最后所有的块都是相等的
最优性证明:暂时没看懂
poj2406
#include<cstdio>
#include<cstring>const int N = 1e6 + 5;
char s[N];
int len_s;
int nxt[N];void get_next() {int i = 0, j = nxt[0] = -1;while (i < len_s) {if (j == -1 || s[i] == s[j]) {++i;++j;nxt[i] = j;}else {j = nxt[j];}}
}int main() {while (scanf("%s", s) && s[0] != '.' && s[1] != '\0') {len_s = strlen(s);get_next();int ans = len_s - nxt[len_s];if (ans == 0)printf("1\n");else if (len_s % ans == 0)printf("%d\n", len_s / ans);else printf("1\n");}return 0;
}
相关文章:
kmp算法
前缀函数 π[i]maxk0,⋯,i{k∣s[0,⋯,k−1]s[i−(k−1),⋯,i]}\pi\left[i\right] \max\limits_{k 0,\cdots, i}\left\{k|s\left[0,\cdots,k-1\right] s\left[i-\left(k-1\right) ,\cdots, i\right]\right\} π[i]k0,⋯,imax{k∣s[0,⋯,k−1]s[i−(k−1),⋯,i]} 简单来说…...
【Python】正则表达式简单教程
0x01 正则表达式概念及符号含义 掌握正则表达式,只需要记住不同符号所表示的含义,以及对目标对象模式(或规律)的正确概括。 1、基础内容 字符匹配 在正则表达式中,如果直接给出字符,就是精确匹配。\d 匹…...
SAP ABAP Odata
GetEntity和GetEntitys GetEntitys 创建Odata Project 导入结构 选择需要的字段 设定Key 勾选字段的creatable、updatable、sortable、nullable、filterable属性值。 再依上述步骤创建ZPOITEM结构和实体集 3. 创建ZPOHEADER和ZPOITEM的Association 两个实体集的关联字段&…...
Android native ASAN 排查内存泄漏
一、概述 android 对native - c/c 的调试和排查是比较难受的一件事。我看周遭做window , linux 甚至ios的调试排查起c的代码都比较方便。习惯了app开发去熟悉native是各种痛苦,最主要是排查问题上。后续有时间打算整理下native 的错误排查使用ÿ…...
Django项目开发
一.认识NoSQL 1.SQL 关系型数据库 结构化: 定义主键,无符号型数据等关联的:结构化表和表之间的关系通过外键进行关联,节省存储空间SQL查询:语法固定 SELECT id,name,age FROM tb_user WHERE id1 ACID 2.NoSQL 非关系型数据库 Re…...
Debezium系列之:深入理解Debezium Server和Debezium Server实际应用案例详解
Debezium系列之:深入理解Debezium Server和Debezium Server实际应用案例详解 一、认识Debezium Server二、下载Debezium Server三、解压Debezium Server四、查看Debezium Server目录五、Debezium Server配置六、Debezium Server启动输出样式七、源配置八、格式配置九、Transfo…...
IDE2022源码编译tomcat
因为学习需要,我需要源码编译运行tomcat对其源码进行一个简单的追踪分析。由于先前并未接触过java相关的知识,安装阻力巨大。最后请教我的开发朋友才解决了最后的问题。将其整理出来,让大家能够快速完成相关的部署。本文仅解决tomcat-8.5.46版…...
214 情人节来袭,电视剧 《点燃我温暖你》李峋同款 Python爱心表白代码,赶紧拿去用吧
大家好,我是徐公,六年大厂程序员经验,今天为大家带来的是动态心形代码,电视剧 《点燃我温暖你》同款的,大家赶紧看看,拿去向你心仪的对象表白吧,下面说一下灵感来源。 灵感来源 今天ÿ…...
数据库范式
基本概念 函数依赖 x→yx\rightarrow yx→y,当确定xxx的时候,yyy也可以确定 例: 学号→\rightarrow→姓名,当知道了学号,就知道了学生姓名 学号,课程号→\rightarrow→成绩,当知道了学号和课程号ÿ…...
CUDA中的底层驱动API
文章目录CUDA底层驱动API1. Context2. Module3. Kernel Execution4. Interoperability between Runtime and Driver APIs5. Driver Entry Point Access5.1. Introduction5.2. Driver Function Typedefs5.3. Driver Function Retrieval5.3.1. Using the driver API5.3.2. Using …...
【博客616】prometheus staleness对PromQL查询的影响
prometheus staleness对PromQL查询的影响 1、prometheus staleness 官方文档的解释: 概括: 运行查询时,将独立于实际的当前时间序列数据选择采样数据的时间戳。这主要是为了支持聚合(sum、avg 等)等情况,…...
多传感器融合定位十三-基于图优化的建图方法其二
多传感器融合定位十二-基于图优化的建图方法其二3.4 预积分方差计算3.4.1 核心思路3.4.2 连续时间下的微分方程3.4.3 离散时间下的传递方程3.5 预积分更新4. 典型方案介绍4.1 LIO-SAM介绍5. 融合编码器的优化方案5.1 整体思路介绍5.2 预积分模型设计Reference: 深蓝学院-多传感…...
linux 服务器线上问题故障排查
一 线上故障排查概述 1.1 概述 线上故障排查一般从cpu,磁盘,内存,网络这4个方面入手; 二 磁盘的排查 2.1 磁盘排查 1.使用 df -hl 命令来查看磁盘使用情况 2.从读写性能排查:iostat -d -k -x命令来进行分析 最后一列%util可以看到每块磁盘写入的程度,而rrqpm/s以及…...
Sandman:一款基于NTP协议的红队后门研究工具
关于Sandman Sandman是一款基于NTP的强大后门工具,该工具可以帮助广大研究人员在一个安全增强型网络系统中执行红队任务。 Sandman可以充当Stager使用,该工具利用了NTP(一个用于计算机时间/日期同步协议)从预定义的服务器获取并…...
【SSL/TLS】准备工作:HTTPS服务器部署:Nginx部署
HTTPS服务器部署:Nginx部署1. 准备工作2. Nginx服务器YUM部署2.1 直接安装2.2 验证3. Nginx服务器源码部署3.1 下载源码包3.2 部署过程4. Nginx基本操作4.1 nginx常用命令行4.2 nginx重要目录1. 准备工作 1. Linux版本 [rootlocalhost ~]# cat /proc/version Li…...
微搭低代码从入门到精通11-数据模型
学习微搭低代码,先学习基本操作,然后学习组件的基本使用。解决了前端的问题,我们就需要深入学习后端的功能。后端一般包括两部分,第一部分是常规的数据库的操作,包括增删改查。第二部分是业务逻辑的编写,在…...
【算法基础】前缀和与差分
😽PREFACE🎁欢迎各位→点赞👍 收藏⭐ 评论📝📢系列专栏:算法💪种一棵树最好是十年前其次是现在1.什么是前缀和前缀和指一个数组的某下标之前的所有数组元素的和(包含其自身&#x…...
LTD212次升级 | 官网社区支持PC端展示 • 官网新增证件查询应用,支持条形码扫码查询
1、新增证件查询应用,支持条形码扫码查询; 2、新增用户社区PC端功能; 01证件查询应用 1、新增证件查询应用功能 支持证件信息录入、打印功能,支持条形码扫码识别。 后台管理操作路径:官微中心 - 应用 - 证件查询 …...
【安全】nginx反向代理+负载均衡上传webshell
目录 一、负载均衡反向代理下上传webshell Ⅰ、环境搭建 ①下载蚁剑,于github获取官方版: ②下载docker&docker-compose ③结合前面启动环境 ④验证 负载均衡下webshell上传 一、负载均衡反向代理下上传webshell 什么是反向代理? 通常的代…...
线程池框架
这是之前有做的一个可以接受用户传入任意类型的任务函数和任意参数,并且能拿到任务对应返回值的一个线程池框架,可以链接成动态库,用在相关项目里面。一共实现了两版,都是支持fixed和cached模式的,半同步半异步的&…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
【Veristand】Veristand环境安装教程-Linux RT / Windows
首先声明,此教程是针对Simulink编译模型并导入Veristand中编写的,同时需要注意的是老用户编译可能用的是Veristand Model Framework,那个是历史版本,且NI不会再维护,新版本编译支持为VeriStand Model Generation Suppo…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
如何做好一份技术文档?从规划到实践的完整指南
如何做好一份技术文档?从规划到实践的完整指南 🌟 嗨,我是IRpickstars! 🌌 总有一行代码,能点亮万千星辰。 🔍 在技术的宇宙中,我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...
