当前位置: 首页 > news >正文

openssl3.2/test/certs - 041 - 1024-bit leaf key

文章目录

    • openssl3.2/test/certs - 041 - 1024-bit leaf key
    • 概述
    • 笔记
    • END

openssl3.2/test/certs - 041 - 1024-bit leaf key

概述

openssl3.2 - 官方demo学习 - test - certs

笔记

/*!
* \file D:\my_dev\my_local_git_prj\study\openSSL\test_certs\041\my_openssl_linux_doc041.txt
* \note openssl3.2/test/certs - 041 - 1024-bit leaf key
*/// --------------------------------------------------------------------------------
// official bash script
// --------------------------------------------------------------------------------
# openssl3.2/test/certs - 041 - 1024-bit leaf key
OPENSSL_KEYBITS=1024 ./mkcert.sh genee server.example ee-key-1024 ee-cert-1024 ca-key ca-cert// --------------------------------------------------------------------------------
// openssl cmd line parse
// --------------------------------------------------------------------------------
// cmd 1
openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:1024 -out ee-key-1024.pem// cmd 2
// cfg_exp041_cmd2.txt
string_mask=utf8only
[req]
prompt = no
distinguished_name = dn
[dn]
CN = server.exampleopenssl req -new -sha256 -key ee-key-1024.pem -config cfg_exp041_cmd2.txt -out req_exp041_cmd2.pem// cmd 3
// cfg_exp041_cmd3.txt
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid, issuer
basicConstraints = CA:falseextendedKeyUsage = serverAuth
[alts]
subjectAltName = @alts
DNS=server.exampleopenssl x509 -req -sha256 -out ee-cert-1024.pem -extfile cfg_exp041_cmd3.txt -CA ca-cert.pem -CAkey ca-key.pem -set_serial 2 -days 36525 -in req_exp041_cmd2.pem// --------------------------------------------------------------------------------
// openssl log
// --------------------------------------------------------------------------------
openssl genpkey -algorithm rsa -pkeyopt rsa_keygen_bits:1024 -out ee-key-1024.pem 
openssl req -new -sha256 -key ee-key-1024.pem -config /dev/fd/63 -config /dev/fd/63 => /home/lostspeed/openssl/openssl-3.2.0_debian/test/certs/my_openssl_linux_log.txtstring_mask=utf8only
[req]
prompt = no
distinguished_name = dn
[dn]
CN = server.example
openssl x509 -req -sha256 -out ee-cert-1024.pem -extfile /dev/fd/63 -CA ca-cert.pem -CAkey ca-key.pem -set_serial 2 -days 36525 -extfile /dev/fd/63 => /home/lostspeed/openssl/openssl-3.2.0_debian/test/certs/my_openssl_linux_log.txtsubjectKeyIdentifier = hash
authorityKeyIdentifier = keyid, issuer
basicConstraints = CA:falseextendedKeyUsage = serverAuth
[alts]
subjectAltName = @alts
DNS=server.example[alts]

END

相关文章:

openssl3.2/test/certs - 041 - 1024-bit leaf key

文章目录 openssl3.2/test/certs - 041 - 1024-bit leaf key概述笔记END openssl3.2/test/certs - 041 - 1024-bit leaf key 概述 openssl3.2 - 官方demo学习 - test - certs 笔记 /*! * \file D:\my_dev\my_local_git_prj\study\openSSL\test_certs\041\my_openssl_linux_…...

「创新引领未来」科东软件荣获第十二届中国创新创业大赛(广东·广州赛区)优胜奖

近日,广州市科学技术局公布第十二届中国创新创业大赛(广东广州赛区)暨2023年广州科技创新创业大赛常规赛拟获奖企业名单。科东软件凭借国产化技术创新优势、强大的应用场景落地能力和丰富的行业解决方案,荣获第十二届中国创新创业…...

Linux下安装 Redis7

Linux下安装 Redis7 三、Linux下安装 Redis7【redis-7.2.4.tar.gz】3.1.下载redis的安装包3.1.1.手动下载Redis压缩包并上传【redis-7.2.4.tar.gz】3.1.2.wget工具下载redis-7.2.4.tar.gz 3.2.将安装包进行解压缩3.3.进入redis的安装包3.4.检查是否有gcc 环境3.5.编译和安装并指…...

spire.doc合并word文档

文章目录 spire.doc合并word文档1. 引入maven依赖2. 需要合并的word3. 合并文档代码4. 合并结果 spire.doc合并word文档 1. 引入maven依赖 <repositories><repository><id>com.e-iceblue</id><name>e-iceblue</name><url>https://r…...

蓝桥杯官网填空题(01串的熵)

问题描述 答案提交 这是一道结果填空的题, 你只需要算出结果后提交即可。本题的结果为一 个整数, 在提交答案时只填写这个整数, 填写多余的内容将无法得分。 import java.util.*;public class Main {public static void main(String[] args) {for(double zero1;zero<2333…...

【CodeTop】TOP 100 刷题 51-60

文章目录 51. 缺失的第一个正数题目描述代码与解题思路 52. 训练计划 II题目描述代码与解题思路 53. 子集题目描述代码与解题思路 54. 最小覆盖子串题目描述代码与解题思路 55. 从前序与中序遍历序列构造二叉树题目描述代码与解题思路 56. 零钱兑换题目描述代码与解题思路 57. …...

k8s的图形化工具---rancher

rancher是一个开源的企业级多集群的k8s管理平台。 rancher和k8s的区别&#xff1a;都是为了容器的调度和编排系统。但是rancher不仅可以调度还可以管理整个k8s集群。 rancher自带监控(普罗米修斯) 实验部署 master01 20.0.0.32 node01 20.0.0.34 node02 20.0.0.35 test …...

npm安装卡住问题(最新版)

npm安装卡住问题(最新版) 背景&#xff1a; ​ 最近这两天用npm安装一些包的时候&#xff0c;发现一直卡住&#xff1a; 报错&#xff1a; idealTree:npm: sill idealTree buildDeps之前能用的现在不能用了&#xff0c;我一想&#xff0c;是不是源头的问题&#xff0c;还真是…...

什么是线程死锁

死锁是指两个或两个以上的进程&#xff08;线程&#xff09;在执行过程中&#xff0c;由于竞争资 源或者由于彼此通信而造成的一种阻塞的现象&#xff0c;若无外力作用&#xff0c;它们都将无法推 进下去。此时称系统处于死锁状态或系统产生了死锁&#xff0c;这些永远在互相…...

Django从入门到精通(二)

目录 三、视图 3.1、文件or文件夹 3.2、相对和绝对导入urls 3.3、视图参数requests 3.4、返回值 3.5、响应头 3.6、FBV和CBV FBV 四、静态资源 4.1、静态文件 4.2、媒体文件 五、模板 5.1、寻找html模板 5.2、模板处理的本质 5.3、常见模板语法 5.4、内置模板函…...

建筑物防雷检测安全接地应用解决方案

雷电是一种自然现象&#xff0c;具有极高的电压和电流&#xff0c;对建筑物及其内部设备、人员和财产可能造成严重的危害&#xff0c;如火灾、爆炸、电击、电磁干扰等。因此&#xff0c;建筑物必须采取有效的防雷措施&#xff0c;以保障建筑物的安全和可靠运行。建筑物防雷检测…...

支付宝小程序开发踩坑笔记(支付宝、学习强国小程序)

1、接口请求安卓端回调 success&#xff0c;IOS 端回调 fail 原因&#xff1a;dataType 设置不对&#xff0c;默认是 json 格式&#xff0c;对返回数据会进行 json 解析&#xff0c;如果解析失败&#xff0c;就会回调 fail 。加密传输一般是 text 格式。 2、input 禁止输入空格…...

如何降低微服务复杂度丨云栖大会微服务主题分享实录

作者&#xff1a;谢吉宝 本文整理自阿里云资深技术专家、中间件负责人谢吉宝在2023云栖大会《极简微服务模式&#xff0c;降低微服务复杂度的最佳实践》的分享 2023 云栖大会现场 当面临复杂的挑战时&#xff0c;"分而治之"的方法往往能取得显著的效果。微服务架构…...

openresty 安装, nginx与 openresty

openresty VS nginx Nginx 是一款高性能的 Web 服务器和反向代理服务器&#xff0c;具备基础的功能如HTTP服务、负载均衡、反向代理以及动静分离等。它是许多互联网应用的核心组件&#xff0c;因其模块化和可扩展的设计而受到欢迎。1 OpenResty 是基于 Nginx 的 Web 平台&…...

puppeteer实现截图

Window服务器说明 1.在本地安装 puppeteer 先创建一个本地文件夹puppeteer&#xff0c;我的地址D:\common_workspace\puppeteer 然后使用cmd打开这个文件夹所在位置&#xff0c;再执行如下两条命令即可。 npm install -g cnpm --registryhttps://registry.npm.taobao.orgcnpm …...

【2024Java面试突击】并发编程、线程池面试实战

前言 最近在更新面试突击专栏&#xff0c;我把每一篇将字数都尽量控制在 2000 字以内&#xff0c;可能在文章里边写的没有那么细致&#xff0c;主要是提供一些 问题 以及 回答的思路 &#xff0c;以及 面试中可能忽略的漏洞 &#xff0c;所以在看完文章之后&#xff0c;如果自…...

ASUS华硕无畏Pro15笔记本电脑(M6500QB,M6500QH)工厂模式原厂OEM预装Windows11.22H2系统 含Recovery恢复

原装出厂Windows11系统适用于华硕无畏15笔记本电脑型号&#xff1a;M6500QB和M6500QH 链接&#xff1a;https://pan.baidu.com/s/1AVGLN6-ILIRogOMj48Mk1w?pwdmi7d 提取码&#xff1a;mi7d 带有ASUS RECOVERY恢复功能、自带所有驱动、出厂主题专用壁纸、系统属性联机支持…...

代码随想录算法训练营第三十天|51. N皇后

|51. N皇后 public List<List<String>> solveNQueens(int n) {List<List<String>> res new ArrayList<>();return null;}void backtracking1(int n, int row, int[] columns) {// 是否在所有n行里都摆放好了皇后?if (row n) {count;// 找到了…...

Kubernetes(K8S)各种攻击方法

1. 准备工作 1.1. metarget使用 项目地址(教程):https://github.com/Metarget/metarget/blob/master/README-zh.md 注意:推荐在Ubuntu 18.04(推荐)安装。 1.1.1. 安装metarget git clone https://github.com/Metarget/metarget.git cd metarget/ sudo apt install pyt…...

【MySQL】内外连接

内外连接 一、内连接二、外连接1、左外连接2、右外连接 表的连接分为内连和外连。 一、内连接 内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选。只不过为了让sql的可读性更好&#xff0c;我们使用其他的关键字进行内连接。 语法&#xff1a; SELECT ... FRO…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...