当前位置: 首页 > news >正文

MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法

MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法。阻尼最小二乘法通常用于处理数值求解问题中的不稳定性和噪声。以下是一个简单的MATLAB代码示例,演示了机械臂逆运动学的阻尼最小二乘法求解:

% 机械臂参数
L1 = 1;  % 机械臂长度
L2 = 1;% 目标位置
x_desired = 1;
y_desired = 1;% 初始猜测
theta = [0, 0];% 最小二乘法参数
lambda = 0.1;  % 阻尼系数% 迭代次数
max_iterations = 100;for iter = 1:max_iterations% 正运动学,计算当前末端位置x_current = L1 * cos(theta(1)) + L2 * cos(theta(1) + theta(2));y_current = L1 * sin(theta(1)) + L2 * sin(theta(1) + theta(2));% 误差error = [x_desired - x_current; y_desired - y_current];% 雅可比矩阵J = [-L1 * sin(theta(1)) - L2 * sin(theta(1) + theta(2)), -L2 * sin(theta(1) + theta(2));L1 * cos(theta(1)) + L2 * cos(theta(1) + theta(2)),  L2 * cos(theta(1) + theta(2))];% 阻尼最小二乘法求解delta_theta = pinv(J' * J + lambda^2 * eye(2)) * J' * error;% 更新关节角度theta = theta + delta_theta';% 判断是否达到目标精度if norm(error) < 1e-6break;end
end% 输出最终结果
disp('最终关节角度:');
disp(theta);

请注意,这只是一个简单的例子,实际应用中需要根据具体的机械臂结构和运动学方程进行调整。

相关文章:

MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法

MATLAB中实现机械臂逆运动学求解的方法之一是使用阻尼最小二乘法。阻尼最小二乘法通常用于处理数值求解问题中的不稳定性和噪声。以下是一个简单的MATLAB代码示例&#xff0c;演示了机械臂逆运动学的阻尼最小二乘法求解&#xff1a; % 机械臂参数 L1 1; % 机械臂长度 L2 1;…...

2024.1.24 GNSS 学习笔记

1.伪距观测值公式 2.载波相位观测值公式 3.单点定位技术(Single Point Positionin, SPP) 仅使用伪距观测值&#xff0c;不使用其他的辅助信息获得ECEF框架下绝对定位技术。 使用广播星历的轨钟进行定位&#xff0c;考虑到轨钟的米级精度&#xff0c;所以对于<1米的误差&…...

2024-01-22(MongoDB)

1.Mongodb使用的业务场景&#xff1a; 传统的关系型数据库/mysql在“三高”需求以及应对web2.0的网站需求面前&#xff0c;有点力不从心&#xff0c;什么是“三高”需求&#xff1a; a. 对数据库高并发的读写需求 b. 对海量数据的高效率存储和访问需求 c. 对数据库的高可扩…...

无人机航迹规划(六):七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划(提供MATLAB代码)

一、七种算法&#xff08;DBO、LO、SWO、COA、LSO、KOA、GRO&#xff09;简介 1、蜣螂优化算法DBO 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…...

《WebKit 技术内幕》学习之十二(2):安全机制

2 沙箱模型 2.1 原理 一般而言&#xff0c;对于网络上的网页中的JavaScript代码和插件是不受信的&#xff08;除非是经过认证的网站&#xff09;&#xff0c;特别是一些故意设计侵入浏览器运行的主机代码更是非常危险&#xff0c;通过一些手段或者浏览器中的漏洞&#xff0c…...

算法优化:LeetCode第122场双周赛解题策略与技巧

接下来会以刷常规题为主 &#xff0c;周赛的难题想要独立做出来还是有一定难度的&#xff0c;需要消耗大量时间 比赛地址 3011. 判断一个数组是否可以变为有序 public class Solution {public int minimumCost(int[] nums) {if (nums.length < 3) {// 数组长度小于3时&a…...

IDEA导出jar

1、选择导出方式 2、选择Main Class 3、构建jar...

Win10/11中VMware Workstation设置网络桥接模式

文章目录 一、添加VMware Bridge Protocol服务二、配置桥接参数1.启用系统Device Install Service服务2.配置VMware 需要确认物理网卡是否有添加VMware Bridge Protocol服务 添加VMware Bridge Protocol服务 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参…...

html Canvas粒子文字特效

代码有点长&#xff0c;下面是代码&#xff1a; <!DOCTYPE html> <html><head><meta charset"UTF-8"><title>HTML5 Canvas粒子效果文字动画特效DEMO演示</title><link rel"stylesheet" href"css/normalize.c…...

@JsonFormat失效,被jackson自定义配置覆盖

jackson配置类 我的jackson配置类如下&#xff0c;其中serializerByType(LocalDateTime.class, new LocalDateTimeSerializer()) 覆盖了JsonFormat注解 Configuration public class JacksonConfiguration {public static final DateTimeFormatter optionalDateTimePattern (n…...

SaaS系统如何助力企业数字化转型

随着科技的快速发展&#xff0c;数字化转型已经成为企业适应市场变化、提高竞争力的必要手段。在这个过程中&#xff0c;SaaS&#xff08;软件即服务&#xff09;系统以其独特的优势&#xff0c;正在成为越来越多企业的首选。乔拓云SaaS系统作为这一领域的佼佼者&#xff0c;更…...

nginx配置内网代理,前端+后端分开配置

安装好后nginx,进入配置文件 我这块安装在了home里面,各位根据自身情况选择 打开nginx.conf文件 在底部查看是否包含这段信息:含义是配置文件包含该路径下的配置文件 include /home/nginx/conf/conf.d/*.conf; # 该路径根据自己的安装位置自行修改 配置文件 进入conf.d文…...

i18n多国语言Internationalization的动态实现

一、数据动态的更新 在上一篇i18n多国语言Internationalization的实现-CSDN博客&#xff0c;可能会遇到一个问题&#xff0c;我们在进行英文或中文切换时&#xff0c;并没有办法对当前的数据进行动态的更新。指的是什么意思呢&#xff1f;当前app.js当中一个组件内容&#xff…...

C++笔记(二)

函数的默认参数 如果我们自己传入数据&#xff0c;就用自己的数据&#xff0c;如果没有&#xff0c;就用默认值 语法&#xff1a; 返回值类型 函数名&#xff08;形参默认值&#xff09;{} int func&#xff08;int a&#xff0c;int b20&#xff0c;int c30&#xff09;{} …...

【技能---构建github中SSH密钥的流程】

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言SSH基于账号口令的安全验证通过SSH连接到服务器打开终端&#xff08;命令行界面&#xff09;使用 SSH 命令连接&#xff1a; 在 Ubuntu 中生成 SSH 密钥并将其添…...

linux-centos服务器离线安装yapi(包含nodejs、mongodb、yapi、pm2离线安装)

yapi是使用vue框架开发的,借助nodejs 前端直接访问的mongodb数据库,离线安装yapi步骤如下 下载离线安装包 下载地址 https://download.csdn.net/download/qq445829096/88778418 离线安装包先复制到 dev/yapi目录(根据自己习惯自定义目录) node-v12.13.0-linux-x64.tar.xz …...

手撕重采样,考虑C的实现方式

一、参考文章&#xff1a; 重采样、上采样、下采样 - 知乎 (zhihu.com) 先直接给结论&#xff0c;正常重采样过程如下&#xff1a; 1、对于原采样率fs&#xff0c;需要重采样到fs1&#xff0c;一般fs和fs1都是整数哈&#xff0c;则先找fs和fs1的最小公倍数&#xff0c;设为m…...

网络安全产品之认识入侵防御系统

由于网络安全威胁的不断演变和增长。随着网络技术的不断发展和普及&#xff0c;网络攻击的种类和数量也在不断增加&#xff0c;给企业和个人带来了巨大的安全风险。传统的防火墙、入侵检测防护体系等安全产品在面对这些威胁时&#xff0c;存在一定的局限性和不足&#xff0c;无…...

​第20课 在Android Native开发中加入新的C++类

​这节课我们开始利用ffmpeg和opencv在Android环境下来实现一个rtmp播放器&#xff0c;与第2课在PC端实现播放器的思路类似&#xff0c;只不过在处理音视频显示和播放的细节略有不同。 1.压缩备份上节课工程文件夹并修改工程文件夹为demo20&#xff0c;将demo20导入到Eclipse或…...

python学习笔记11(程序跳转语句、空语句)

&#xff08;一&#xff09;程序跳转语句 1、break 用法&#xff1a;循环语句中使用&#xff0c;结束本层循环&#xff0c;一般搭配if来使用。注意while/else语法 示例&#xff1a; i0; while i<3:user_nameinput(请输入用户名&#xff1a;)pwdinput("请输入密码&a…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...