[pytorch入门] 2. tensorboard
tensorboard简介
TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装,服务Pytorch等其他的框架
可以常常用来观察训练过程中每一阶段如何输出的
- 安装
pip install tensorboard - 启动
会默认在6006端口打开,也可以自行制定窗口,如:tensorboard --logdir=<directory_name>tensorboard --logdir=logs --port=6007
用法
- 所在类:
介绍:from torch.utils.tensorboard import SummaryWriterclass SummaryWriter:"""Writes entries directly to event files in the log_dir to beconsumed by TensorBoard.The `SummaryWriter` class provides a high-level API to create an event filein a given directory and add summaries and events to it. The class updates thefile contents asynchronously. This allows a training program to call methodsto add data to the file directly from the training loop, without slowing downtraining.""" - 创建对象
writer = SummaryWriter('logs') # 说明写入哪个文件夹 - 常用方法
writer.add_image() # 图像方式 writer.add_scalar() # 坐标方式writer.close() # 使用完之后需要close
add_scalar()
def add_scalar(self,tag,scalar_value,global_step=None,walltime=None,new_style=False,double_precision=False,):"""Add scalar data to summary.添加标量数据到summary中Args:tag (str): Data identifier 图表标题scalar_value (float or string/blobname): Value to save 数值(y轴)global_step (int): Global step value to record 训练到多少步(x轴)walltime (float): Optional override default walltime (time.time())with seconds after epoch of eventnew_style (boolean): Whether to use new style (tensor field) or oldstyle (simple_value field). New style could lead to faster data loading.Examples::from torch.utils.tensorboard import SummaryWriterwriter = SummaryWriter()x = range(100)for i in x:writer.add_scalar('y=2x', i * 2, i)writer.close()Expected result:.. image:: _static/img/tensorboard/add_scalar.png:scale: 50 %"""
注意:向writer中写入新事件的同时她也会保留上一个事件,这就会导致一些拟合出现问题
解决:删除之前的log文件,重新生成
add_image()
def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):"""Add image data to summary.Note that this requires the ``pillow`` package.Args:tag (str): Data identifierimg_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data 注意数据的类型global_step (int): Global step value to record后面不用管walltime (float): Optional override default walltime (time.time())seconds after epoch of eventdataformats (str): Image data format specification of the formCHW, HWC, HW, WH, etc.Shape:img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` toconvert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long ascorresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``."""
实践
如在tensorboard中展示图片:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/0013035.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)writer.add_image("test",img_array,1,dataformats='HWC') # 展示读取的图片for i in range(100):writer.add_scalar('y=2x', 3*i, i) # 绘图writer.close()
-
writer.add_image中的参数
def add_image(self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"):名称、图形向量(ndarray类型),第几步(是滑动翻页那种的,这里相当于设定是第几页,每次向后设定时不会清除原来的数据)
当前代码效果如图:

修改图片后:
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Imagewriter = SummaryWriter('logs')
image_path = './dataset2/train/ants_image/5650366_e22b7e1065.jpg'
img_PIL = Image.open(image_path)
img_array = np.array(img_PIL)
print(type(img_array))
print(img_array.shape)# 这里更新,说明为第二步
writer.add_image("test",img_array,2,dataformats='HWC')for i in range(100):writer.add_scalar('y=2x', 3*i, i)writer.close()
拖拉就会发现有两张图


相关文章:
[pytorch入门] 2. tensorboard
tensorboard简介 TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中.但是也可以独立安装,服务Pytorch等其他的框架 可以常常用来观察训练过程中每一阶段如何输出的 安装pip install tensorboard启动tensorboard --logdir<d…...
基于卡尔曼滤波的平面轨迹优化
文章目录 概要卡尔曼滤波代码主函数代码CMakeLists.txt概要 在进行目标跟踪时,算法实时测量得到的目标平面位置,是具有误差的,连续观测,所形成的轨迹如下图所示,需要对其进行噪声滤除。这篇博客将使用卡尔曼滤波,对轨迹进行优化。 优化的结果为黄色线。 卡尔曼滤波代码…...
GBASE南大通用分享如何更新嵌套的集合
如果您想要更新集合的集合,则必须声明游标来访问外层的集合,然后声明嵌套的游标来 访问内层的集合。 例如,假设 manager 表有一附加的列 scores,它包含一其元素类型为整数的 MULTISET 的 LIST,如下图所示。 更新集合…...
Maya------插入循环边
11.maya 常用建模命令1.插入循环边 多切割_哔哩哔哩_bilibili 与边相对距离 逐渐变化...
Nginx_入门
系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 Nginx_入门 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、Nginx概述二、Nginx的应用…...
坚持刷题 | 平衡二叉树
文章目录 题目考察点代码实现实现总结对实现进一步改进扩展提问 坚持刷题,老年痴呆追不上我,今天继续二叉树:平衡二叉树 题目 110.平衡二叉树 考察点 递归能力: 能否使用递归来解决问题。树的基本操作:能否正确地访…...
江大白 | 万字长文图解Numpy教程,看这一篇就够了!
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满,有超级详细的图解。 原文链接:万字长文图解Numpy教程,看这一篇就够了! (qq.com) 以下文章来源于博客:Medium 作者&…...
数据结构——静态链表
1.定义: (1)单链表:各个结点散落在内存中的各个角落,每个结点有指向下一个节点的指针(下一个结点在内存 中的地址); (2)静态链表:用数组的方式来描述线性表的链式存储结构: 分配一…...
C++ 知识列表【图】
举例C的设计模式和智能指针 当谈到 C 的设计模式时,以下是一些常见的设计模式: 工厂模式(Factory Pattern):用于创建对象的模式,隐藏了对象的具体实现细节,只暴露一个公共接口来创建对象。 单例…...
系统登录的时候的密码如何做到以加密的形式进行登录【java.security包下的api】工具类。
/** description: 将普通的publicKey转化得到一个RSAPublicKey* author: zkw* date: 2024/1/24 16:17* param: publicKey 普通的publicKey* return: RSAPublicKey 得到一个新的RSAPublicKey**/public static RSAPublicKey getPublicKey(String publicKey) throws NoSuchAlgorit…...
java基础学习: 什么是泛型的类型擦除
文章目录 一、什么是泛型2、泛型编译前和编译后对比3、泛型的优点(1)提高了代码的复用性和可读性(2)提高了代码的安全性 二、泛型的定义1、泛型类2、泛型接口3、泛型方法 三、泛型通配符1、?和T有什么区别2、通配符的分…...
Vue+OpenLayers7入门到实战:在地图上添加缩放控件、比例尺控件和鼠标经纬度位置显示控件
返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7 前言 本章主要介绍如何使用OpenLayers7在地图上添加地图缩放控件,比例尺显示控件和鼠标经纬度位置展示控件这三个Control控件。 二、依赖和使用 "ol": "7.5.2"使用npm安装依赖npm install ol@7.5.…...
极简生活|可以慢慢变富的8个习惯
哈喽,大家好啊,我是雷工! 巴菲特巴老爷子曾经多次指出: 大多数投资者的问题就在于不愿意慢慢变富。 可是大多数人都急于一夜暴富,于是乎那么多的追涨杀跌,不断上演,越急功近利反而越损失惨重。 …...
MySQL基础(一)
学习数据库的目的: 实现数据持久化到本地。使用完整的管理系统统一管理,可以实现结构化查询,方便管理。 一、数据库概述 数据库(DataBase) 为了方便数据的存储和管理,它将数据按照特定的 规则存储在磁盘…...
【Linux编译器-gcc/g++使用】
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 设计样例,先见一下 方案一: 方案二: 在企业里面一般维护软件的源代码的话,要维护几份? 方案一&…...
SQL提示与索引终章
✨博客主页:小小恶斯法克的博客 🎈该系列文章专栏:重拾MySQL-进阶篇 📜 感谢大家的关注! ❤️ 可以关注黑马IT,进行学习 目录 🚀SQL提示 🚀覆盖索引 🚀前缀索引 &…...
基于OpenSSL的SSL/TLS加密套件全解析
概述 SSL/TLS握手时,客户端与服务端协商加密套件是很重要的一个步骤,协商出加密套件后才能继续完成后续的握手和加密通信。而现在SSL/TLS协议通信的实现,基本都是通过OpenSSL开源库,本文章就主要介绍下加密套件的含义以及如何在O…...
01-echarts如何绘制三维折线图
echarts如何绘制三维折线图 一、相关依赖包1、下载依赖2、引入依赖 二、创建图表盒子1、创建盒子2、定义数据3、编写方法1、初始化盒子2、设置配置项3、修改数据格式4、设置颜色数组4、设置name数组5、设置线三维和点三维6、添加配置项7、设置图表自适应 4、调用方法 三、整体代…...
Linux-共享内存
文章目录 前言一、system V共享内存申请共享内存挂载共享内存删除共享内存挂载删除共享内存 二、示例代码三.运行效果 前言 在这之前我们已经学习了两种进程间通信方式:匿名管道和命名管道。 从我们之前的学习已经知道,想让多个进程间进行通信就需要让他…...
深入分析 Linux 网络丢包问题
热门IT课程【视频教程】-华为/思科/红帽/oraclehttps://xmws-it.blog.csdn.net/article/details/134398330 所谓丢包,是指在网络数据的收发过程中,由于种种原因,数据包还没传输到应用程序中,就被丢弃了。这些被丢弃包的数量&#…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
论文阅读:Matting by Generation
今天介绍一篇关于 matting 抠图的文章,抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法,已经有很多的工作和这个任务相关。这两年 diffusion 模型很火,大家又开始用 diffusion 模型做各种 CV 任务了&am…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
