当前位置: 首页 > news >正文

自然语言处理的新突破:如何推动语音助手和机器翻译的进步

一、语音助手方面的进展

语音助手作为人机交互的重要入口之一,其性能的提升离不开自然语言处理技术的进步。基于深度学习的语音识别和语义理解技术,使得语音助手可以更准确地分析用户意图,提供个性化服务。

语音识别精度的持续提高

语音识别是语音助手的基础。随着深度神经网络和End-to-End技术的应用,语音识别系统识别精度已接近人耳。根据工业和信息化部发布的《人工智能标准体系建设白皮书(2021)》,语音识别技术识别错误率从2017年的5.6%,下降到2020年的4.5%。高精度的语音转文本为语义理解和用户意图分析奠定基础。

语义理解能力的加强

在理解语音指令的字面含义之上,确定用户真正想表达的意图和需求同样重要。这需要建立包含丰富语义信息的知识图谱,训练出高效的语义解析模型。近年来,预训练语言模型(BERT等)的使用,使得语音助手对用户查询的深层次语义理解能力显著增强。

知识图谱和预训练模型的融合应用

知识图谱提供结构化的实体关系信息,预训练语言模型具有十分强大的语义表示能力。将两者有机结合,有助于语音助手生成更加准确和合理的响应,提供正确认知服务。比如针对“苹果多大”“去了哪儿网Hotel价格”等查询,准确获取对象及其属性信息。

二、机器翻译质量的提高

机器翻译是自然语言处理中一个复杂的任务,其性能的进步也有赖于新技术的引入。基于神经网络的机器翻译方法,显著提升了翻译质量和流畅度。

Seq2Seq建模方法的使用

Seq2Seq(sequence to sequence)把源语言和目标语言建模为编码器和解码器,可以对不定长的语言序列进行 Renault 。相比传统方法,该模型无需明确定义语法规则,更加贴近语言内在规律。

注意力机制的加入

注意力机制使解码器可以关注到源语言不同部分的信息,有助于捕捉长距离依赖关系,生成更连贯的语句。这比简单词语或句法层面的对应,更能学习语言内在的联系。

低资源语言的机器翻译

过去机器翻译更多专注主流语言,而通过迁移学习和半监督学习技术,使模型可以快速适配低资源语言,大幅降低对标注数据的要求。这使更多具有代表性的语言可以使用机器翻译。

三、展望

可以预见,语音助手、机器翻译等与人类语言直接相关的应用,还有很大的提升空间。自然语言处理技术与语音、视觉等前沿技术的深度融合,将推动这些系统更上一层楼。

多模态交互的加强

除语音外,机器需要理解图像、视频中更丰富的内容,完成复杂的多模态推理,才能像人类一样进行灵活交互。这需要构建联合的感知表示模型。

深层语言理解

现阶段对语言的理解主要停留在字面或显式语义层面。而人类语言中含有丰富的暗示、欲表达的意图等深层信息。探索这些内涵将大大提高交互体验。

知识融合和推理

将分散的结构化知识整合,进行跨领域的联合推理,是语音助手获得真知识的关键。也将极大丰富机器翻译中的语义表达。

总体来说,自然语言处理技术尤其是与AI的深度融合,正在重塑语音助手、机器翻译等语言应用。这类系统不仅在理解人类语言上更上一层楼,也将以更加智能和友好的方式服务于我们的生活。

相关文章:

自然语言处理的新突破:如何推动语音助手和机器翻译的进步

一、语音助手方面的进展 语音助手作为人机交互的重要入口之一,其性能的提升离不开自然语言处理技术的进步。基于深度学习的语音识别和语义理解技术,使得语音助手可以更准确地分析用户意图,提供个性化服务。 语音识别精度的持续提高 语音识别是语音助手的基础。随着深度神经网…...

vue3 + jeecgBoot 获取项目IP地址

封装的useGlobSetting 函数 引入并使用 import { useGlobSetting } from //hooks/setting;const glob useGlobSetting();console.log(glob.uploadUrl) //http://192.168.105.57:7900/bs-axfd...

Java Server-Sent Events通信

Server-Sent Events特点与优势 后端可以向前端发送信息,类似于websocket,但是websocket是双向通信,但是sse为单向通信,服务器只能向客户端发送文本信息,效率比websocket高。 单向通信:SSE只支持服务器到客…...

[蓝桥杯]真题讲解:冶炼金属(暴力+二分)

蓝桥杯真题视频讲解&#xff1a;冶炼金属&#xff08;暴力做法与二分做法&#xff09; 一、视频讲解二、暴力代码三、正解代码 一、视频讲解 视频讲解 二、暴力代码 //暴力代码 #include<bits/stdc.h> #define endl \n #define deb(x) cout << #x << &qu…...

Fastbee开源物联网项目RoadMap

架构优化 代码简化业务&协议解耦关键组件支持横向拓展网络协议支持横向拓展&#xff0c;包括&#xff1a;mqtt broker,tcp,coap,udp,sip等协议插件化编码脚本化业务代码模版化消息总线 功能优化 网关/子网关&#xff1a;上线&#xff0c;绑定&#xff0c;拓扑&#xff0…...

Linux文件管理技术实践

shell shell的种类(了解) shell是用于和Linux内核进行交互的一个程序&#xff0c;他的功能和window系统下的cmd是一样的。而且shell的种类也有很多常见的有c shell、bash shell、Korn shell等等。而本文就是使用Linux最常见的bash shell对Linux常见指令展开探讨。 内置shell…...

Python如何按指定列的空值删除行?

目录 1、按指定列的空值删除行2、滑动窗口按指定列的值填充最前面的缺失值 1、按指定列的空值删除行 数据准备&#xff1a; df pd.DataFrame({C1: [1, 2, 3, 4], C2: [A, np.NaN, C, D], C3: [V1, V2, V3, np.NaN]}) print(df.to_string()) C1 C2 C3 0 1 A V1 1 …...

【云原生】Docker的镜像创建

目录 1&#xff0e;基于现有镜像创建 &#xff08;1&#xff09;首先启动一个镜像&#xff0c;在容器里做修改 ​编辑&#xff08;2&#xff09;然后将修改后的容器提交为新的镜像&#xff0c;需要使用该容器的 ID 号创建新镜像 实验 2&#xff0e;基于本地模板创建 3&am…...

大语言模型推理提速:TensorRT-LLM 高性能推理实践

作者&#xff1a;顾静 TensorRT-LLM 如何提升 LLM 模型推理效率 大型语言模型&#xff08;Large language models,LLM&#xff09;是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络&#xff0c;这些神经网络由具有 self-attention 的编码器和解码器组…...

全面理解“张量”概念

1. 多重视角看“张量” 张量&#xff08;Tensor&#xff09;是一个多维数组的概念&#xff0c;在不同的学科领域中有不同的应用和解释&#xff1a; 物理学中的张量&#xff1a; 在物理学中&#xff0c;张量是一个几何对象&#xff0c;用来表示在不同坐标系下变换具有特定规律的…...

MacOS X 安装免费的 LaTex 环境

最近把工作终端一步步迁移到Mac上来了&#xff0c;搭了个 Latex的环境&#xff0c;跟windows上一样好用。 首先&#xff0c;如果是 intel 芯片的 macOS&#xff0c;那么可以使用组合1&#xff0c; 如果是 M1、M2 或 M3 芯片或者 intel 芯片的 Mac book&#xff0c;则应该使用…...

深入Amazon S3:实战指南

Amazon S3(Simple Storage Service)是AWS(Amazon Web Services)提供的一项强大的云存储服务,广泛用于存储和检索各种类型的数据。本篇实战指南将深入介绍如何在实际项目中充分利用Amazon S3的功能,包括存储桶的创建、对象的管理、权限控制、版本控制、日志记录等方面的实…...

Ansible自动化运维(三)Playbook 模式详解

&#x1f468;‍&#x1f393;博主简介 &#x1f3c5;云计算领域优质创作者   &#x1f3c5;华为云开发者社区专家博主   &#x1f3c5;阿里云开发者社区专家博主 &#x1f48a;交流社区&#xff1a;运维交流社区 欢迎大家的加入&#xff01; &#x1f40b; 希望大家多多支…...

LCS板子加逆向搜索

LCS 题面翻译 题目描述&#xff1a; 给定一个字符串 s s s 和一个字符串 t t t &#xff0c;输出 s s s 和 t t t 的最长公共子序列。 输入格式&#xff1a; 两行&#xff0c;第一行输入 s s s &#xff0c;第二行输入 t t t 。 输出格式&#xff1a; 输出 s s s…...

不同知识表示方法与知识图谱

目录 前言1 一阶谓词逻辑1.1 简介1.2 优势1.3 局限性 2 产生式规则2.1 简介2.2 优势2.3 局限性 3 框架系统3.1 简介3.2 优势3.3 局限性 4 描述逻辑4.1 简介4.2 优势4.3 局限性 5 语义网络5.1 简介5.2 优势5.3 局限性 结语 前言 知识表示是人工智能领域中至关重要的一环&#x…...

Kotlin程序设计 扩展篇(一)

Kotlin程序设计&#xff08;扩展一&#xff09; **注意&#xff1a;**开启本视频学习前&#xff0c;需要先完成以下内容的学习&#xff1a; 请先完成《Kotlin程序设计》视频教程。请先完成《JavaSE》视频教程。 Kotlin在设计时考虑到了与Java的互操作性&#xff0c;现有的Ja…...

星环科技基于第五代英特尔®至强®可扩展处理器的分布式向量数据库解决方案重磅发布

12月15日&#xff0c;2023 英特尔新品发布会暨 AI 技术创新派对上&#xff0c;星环科技基于第五代英特尔至强可扩展处理器的Transwarp Hippo分布式向量数据库解决方案重磅发布。该方案利用第五代英特尔至强可扩展处理器带来的强大算力&#xff0c;实现了约 2 倍的代际性能提升&…...

一体化运维的发展趋势与未来展望

随着信息技术的迅猛发展&#xff0c;企业的IT系统已经从单一的、孤立的应用转变为多元化、复杂化的系统集群。云计算、大数据、物联网等前沿技术的广泛应用&#xff0c;使得企业的IT运维面临着前所未有的挑战。在这样的背景下&#xff0c;一体化运维作为一种新型的运维模式&…...

科技云报道:金融大模型落地,还需跨越几重山?

科技云报道原创。 时至今日&#xff0c;大模型的狂欢盛宴仍在持续&#xff0c;而金融行业得益于数据密集且有强劲的数字化基础&#xff0c;从一众场景中脱颖而出。 越来越多的公司开始布局金融行业大模型&#xff0c;无论是乐信、奇富科技、度小满、蚂蚁这样的金融科技公司&a…...

C语言入门到精通之练习34:求100之内的素数

题目&#xff1a;求100之内的素数。 程序分析&#xff1a;质数&#xff08;素数&#xff09;酵母素数&#xff0c;有无限个。一个大于1的自然数&#xff0c;除了1和它本身外&#xff0c;不能被其他自然数整除。 代码如下&#xff1a; #include <stdio.h># #include &l…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...