redis 工具类
在Spring Boot项目中,Redis是一个常用的分布式缓存解决方案。下面展示的RedisCache工具类封装了对Redis进行基本操作的方法,包括存储和获取各种类型的数据、设置过期时间以及处理集合类型的缓存。
/*** redis 工具类***/
@SuppressWarnings(value = { "unchecked", "rawtypes" })
@Component
public class RedisCache
{@Autowiredpublic RedisTemplate redisTemplate;/*** 缓存基本的对象,Integer、String、实体类等** @param key 缓存的键值* @param value 缓存的值*/public <T> void setCacheObject(final String key, final T value){redisTemplate.opsForValue().set(key, value);}/*** 缓存基本的对象,Integer、String、实体类等** @param key 缓存的键值* @param value 缓存的值* @param timeout 时间* @param timeUnit 时间颗粒度*/public <T> void setCacheObject(final String key, final T value, final Integer timeout, final TimeUnit timeUnit){redisTemplate.opsForValue().set(key, value, timeout, timeUnit);}/*** 设置有效时间** @param key Redis键* @param timeout 超时时间* @return true=设置成功;false=设置失败*/public boolean expire(final String key, final long timeout){return expire(key, timeout, TimeUnit.SECONDS);}/*** 设置有效时间** @param key Redis键* @param timeout 超时时间* @param unit 时间单位* @return true=设置成功;false=设置失败*/public boolean expire(final String key, final long timeout, final TimeUnit unit){return redisTemplate.expire(key, timeout, unit);}/*** 获得缓存的基本对象。** @param key 缓存键值* @return 缓存键值对应的数据*/public <T> T getCacheObject(final String key){ValueOperations<String, T> operation = redisTemplate.opsForValue();return operation.get(key);}/*** 删除单个对象** @param key*/public boolean deleteObject(final String key){return redisTemplate.delete(key);}/*** 删除集合对象** @param collection 多个对象* @return*/public long deleteObject(final Collection collection){return redisTemplate.delete(collection);}/*** 缓存List数据** @param key 缓存的键值* @param dataList 待缓存的List数据* @return 缓存的对象*/public <T> long setCacheList(final String key, final List<T> dataList){Long count = redisTemplate.opsForList().rightPushAll(key, dataList);return count == null ? 0 : count;}/*** 获得缓存的list对象** @param key 缓存的键值* @return 缓存键值对应的数据*/public <T> List<T> getCacheList(final String key){return redisTemplate.opsForList().range(key, 0, -1);}/*** 缓存Set** @param key 缓存键值* @param dataSet 缓存的数据* @return 缓存数据的对象*/public <T> long setCacheSet(final String key, final Set<T> dataSet){Long count = redisTemplate.opsForSet().add(key, dataSet);return count == null ? 0 : count;}/*** 获得缓存的set** @param key* @return*/public <T> Set<T> getCacheSet(final String key){return redisTemplate.opsForSet().members(key);}/*** 缓存Map** @param key* @param dataMap*/public <T> void setCacheMap(final String key, final Map<String, T> dataMap){if (dataMap != null) {redisTemplate.opsForHash().putAll(key, dataMap);}}/*** 获得缓存的Map** @param key* @return*/public <T> Map<String, T> getCacheMap(final String key){return redisTemplate.opsForHash().entries(key);}/*** 往Hash中存入数据** @param key Redis键* @param hKey Hash键* @param value 值*/public <T> void setCacheMapValue(final String key, final String hKey, final T value){redisTemplate.opsForHash().put(key, hKey, value);}/*** 获取Hash中的数据** @param key Redis键* @param hKey Hash键* @return Hash中的对象*/public <T> T getCacheMapValue(final String key, final String hKey){HashOperations<String, String, T> opsForHash = redisTemplate.opsForHash();return opsForHash.get(key, hKey);}/*** 获取多个Hash中的数据** @param key Redis键* @param hKeys Hash键集合* @return Hash对象集合*/public <T> List<T> getMultiCacheMapValue(final String key, final Collection<Object> hKeys){return redisTemplate.opsForHash().multiGet(key, hKeys);}/*** 获得缓存的基本对象列表** @param pattern 字符串前缀* @return 对象列表*/public Collection<String> keys(final String pattern){return redisTemplate.keys(pattern);}
}
此RedisCache工具类提供了一套便捷的方法来与Redis进行交互,简化了开发过程中对缓存的操作,提高了开发效率并降低了代码复杂度。通过这个类,开发者可以轻松地对字符串、对象、集合以及其他复杂结构如Map进行缓存管理,并支持设置过期时间和批量操作等功能。
相关文章:
redis 工具类
在Spring Boot项目中,Redis是一个常用的分布式缓存解决方案。下面展示的RedisCache工具类封装了对Redis进行基本操作的方法,包括存储和获取各种类型的数据、设置过期时间以及处理集合类型的缓存。 /*** redis 工具类***/ SuppressWarnings(value { &q…...
焕新升级,不同以“网” | AnyCase客户端全新上线
升级啦~ 2024年1月23日 箱讯AnyCase官网全新改版上线! 全球贸易All in One集成平台 集物流服务、外贸服务、供应链金融服务、企业风控服务、碳中和服务于一体 添加图片注释,不超过 140 字(可选) 优化首页布局→体验升级 此次…...
导出 MySQL 数据库表结构、数据字典word设计文档
一、第一种 :利用sql语句查询 需要说明的是该方法应该适用很多工具,博主用的是navicat SELECT TABLE_NAME 表名,( i : i 1 ) AS 序号,COLUMN_NAME 列名, COLUMN_TYPE 数据类型, DATA_TYPE 字段类型, CHARACTER_MAXIMUM_LENGTH 长度, IS_NULLABLE…...
conda管理python安装包与虚拟环境的相关命令汇总
conda的简单介绍 Anaconda,是一个开源的Python发行版本,包含了conda、Python以及一大堆安装好的工具包及依赖项。 conda是Anaconda中的一个开源的、Python包和环境的管理工具,包含于Anaconda的所有版本当中。因此使用conda需要先安装Anacon…...
Vue3引用echart5 报错解决
一、TypeError: Cannot read properties of undefined (reading type) 原因:由于把echart实例绑定到了一个响应式的变量上 解决方案 【1】使用markRaw 把响应式变量定为非响应式变量 import { markRaw } from vue; export default {data() {return {chartConta…...
浅析HTTP协议
首先,前端请求后端数据,后端响应数据给前端,这是我们大家都知道的,那其中所涉及到的数据传输协议又是什么呢?这个传输规范就是我们大名鼎鼎的HTTP协议! 什么是HTTP协议? HTTP(超文本…...
etcd未授权到控制k8s集群
在安装完 K8s 后,默认会安装 etcd 组件,etcd 是一个高可用的 key-value 数据库,它为 k8s 集群提供底层数据存储,保存了整个集群的状态。大多数情形下,数据库中的内容没有加密,因此如果黑客拿下 etcd&#x…...
制作一个简单的HTML个人网站
在当今数字化的世界里,拥有一个个人网站已经成为了展示个人品牌、分享作品和信息的必备工具。虽然有各种复杂的内容管理系统(CMS)和平台可以帮助我们快速搭建个人网站,但对于初学者或者想要了解更多技术细节的人来说,从…...
头歌C语言字符数组
目录 第1关:字符逆序 任务描述 相关知识(略) 编程要求 测试说明 第2关:字符统计 任务描述 相关知识(略) 编程要求 测试说明 第3关:字符插入 任务描述 相关知识(略) 编程要求 测试说明 第4关:字符串处理 任务描述 相关知识(略)...
【mongoDB】文档 CRUD
目录 1.插入文档 批量插入: 2.查询文档 3.更新文档 4.删除文档 deleteOne() deleteMany() findOneAndDelete() 1.插入文档 可以使用 insert () 方法或者 save() 方法向集合中插入文档 语法如下: db.collection_name.insert(document) collectio…...
每日一题——LeetCode1337.矩阵中战斗力最弱的K行
方法一 个人方法 排序 题目要求就是找出每行有多少个1,根据每行1的个数进行排序,但是是把每行在数组中的位置索引进行排序,并返回前k项 所以先统计每行1的个数,并将数组转化为[index,count]就是索引加个数的数组形式,…...
docker指令存档
目录 Docker 1、概念 2、架构图 3、安装 4、Docker怎么工作的? 5、Docker常用命令 帮助命令 镜像命令 1、查看镜像 2、帮助命令 3、搜索镜像 4、拉取镜像 5、删除镜像 容器命令 1、启动 2、查看运行的容器 3、删除容器 4、启动&停止 其他命令…...
Pandas ------ 向 Excel 文件中写入含有 multi-index 和 Multi-column 表头的数据
Pandas ------ 向 Excel 文件中写入含有 multi-index 和 Multi-column 表头的数据 引言正文 引言 之前在 《pandas向已经拥有数据的Excel文件中添加新数据》 一文中我们介绍了如何通过 pandas 向 Excel 文件中写入数据。那么对于含有多表头的数据,我们该如何将它们…...
ChatGPT 和文心一言 | 两大AI助手哪个更胜一筹
欢迎来到英杰社区: https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区: https://bbs.csdn.net/topics/617897397 📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步ÿ…...
flink学习之窗口处理函数
窗口处理函数 什么是窗口处理函数 Flink 本身提供了多层 API,DataStream API 只是中间的一环,在更底层,我们可以不定义任何具体的算子(比如 map(),filter(),或者 window()),而只是…...
Python 基于pytorch从头写GPT模型;实现gpt实战
1.GPT简介 GPT(Generative Pre-trained Transformer)模型是一种基于Transformer架构的生成式预训练模型,由OpenAI开发。它采用了无监督学习的方式进行预训练,然后通过微调适应特定的任务。GPT模型的结构由多层Transformer解码器组…...
2023年NOC大赛(学而思赛道)创意编程Python初中组决赛真题
2023年NOC大赛(学而思赛道)创意编程Python初中组决赛真题 题目总数:7 总分数:100 编程题 第 1 题 问答题 二进制回文 编程实现: 输入一个正整数,判断它的二进制形式是否是回文数,如果是输出True…...
头歌C++之Switch控制语句编程实训
目录 第1关:根据输入数字判断是星期几 本关必读 本关任务 测试说明 第2关:根据输入的数值和运算符做相应运算 本关必读 本关任务 测试说明 第3关:根据输入年月计算该月份的天数 本关必读 本关任务...
CNN卷积理解
1 卷积的步骤 1 过滤器(卷积核)(Filter或Kernel): 卷积层使用一组可学习的过滤器来扫描输入数据(通常是图像)。每个过滤器都是一个小的窗口,包含一些权重,这些权重通过训…...
DataKit迁移MySQL到openGauss
前言 本文将分享DataKit迁移MySQL到openGauss的项目实战,供广大openGauss爱好者参考。 1. 下载操作系统 https://www.openeuler.org/zh/download https://support.huawei.com/enterprise/zh/doc/EDOC1100332931/1a643956 https://support.huawei.com/enterprise…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
李沐--动手学深度学习--GRU
1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...
VSCode 使用CMake 构建 Qt 5 窗口程序
首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...
