当前位置: 首页 > news >正文

面试经典 150 题 ---- 合并两个有序数组

面试经典 150 题 ---- 合并两个有序数组

  • 合并两个有序数组
    • 方法一:直接合并后排序
    • 方法二:双指针
    • 方法三:逆向双指针

合并两个有序数组

方法一:直接合并后排序

这种方法最简单,直接将 nums2 的数组放到 nums1 数组的尾部,然后对 nums1 进行排序即可

class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {for (int i = 0; i < n; i ++ ) {nums1[i + m] = nums2[i];}Arrays.sort(nums1);}
}

时间复杂度: O((m + n)log(m + n))
数组长度为 m + n,快排的时间复杂度为 O((m + n)log(m + n))

空间复杂度: O((m + n)log(m + n))
数组长度为 m + n,快排的时间复杂度为 O((m + n)log(m + n))

方法二:双指针

方法一没有使用到数组已经被排序的性质。利用这一性质,我们可以使用双指针方法。将两个数组看作队列,每次从数组的头部取出一个比较小的值放到结果中。

class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {int p1 = 0, p2 = 0;int[] sorted = new int[m + n];int cur = 0;while (p1 < m || p2 < n) {if (p1 == m) {sorted[cur] = nums2[p2++];} else if (p2 == n) {sorted[cur] = nums1[p1++];} else if (nums1[p1] < nums2[p2]) {sorted[cur] = nums1[p1++];} else {sorted[cur] = nums2[p2++];}cur ++ ;}for (int i = 0; i < m + n; i ++ ) {nums1[i] = sorted[i];}}
}

时间复杂度: O(m + n)
指针单调移动,最多移动 m + n 次,因此时间复杂度为 O(m + n)

空间复杂度: O(m + n)
需要建立长度为 m + n 的中间数组

方法三:逆向双指针

方法二需要使用临时变量,是因为直接合并到 nums1 中,nums1 中的元素可能会在取出之前被覆盖。那么如何直接避免覆盖 nums1 中的元素呢?可以使用双指针从后往前遍历,每次取两者之中的比较大者放进 nums1 的最后面。

为什么从后往前,将大的元素放入到 nums1 中就不会出现覆盖元素的情况呢?
可以这样想象。如果是将 nums2 中的元素放入了 nums1 中,那么此时 nums1 的元素肯定不会被覆盖,如果是将 nums1 中的元素放入了 nums1 的后半部分,nums1 的前半部分就肯定会出现一个空位,从而保证全部元素都可以放进去且不会发生覆盖。

class Solution {public void merge(int[] nums1, int m, int[] nums2, int n) {int p1 = m - 1, p2 = n - 1;int cur = nums1.length - 1;while(p1 >= 0 || p2 >= 0) {if (p1 == -1) {nums1[cur -- ] = nums2[p2 -- ];} else if (p2 == -1) {nums1[cur -- ] = nums1[p1 -- ];} else if (nums1[p1] > nums2[p2]) {nums1[cur -- ] = nums1[p1 -- ];} else {nums1[cur -- ] = nums2[p2 -- ];}}}
}

时间复杂度: O(m + n)
指针单调移动,最多移动 m + n 次,因此时间复杂度为 O(m + n)

空间复杂度: O(m + n)
直接对 nums1 原地修改,不需要额外的空间

相关文章:

面试经典 150 题 ---- 合并两个有序数组

面试经典 150 题 ---- 合并两个有序数组 合并两个有序数组方法一&#xff1a;直接合并后排序方法二&#xff1a;双指针方法三&#xff1a;逆向双指针 合并两个有序数组 方法一&#xff1a;直接合并后排序 这种方法最简单&#xff0c;直接将 nums2 的数组放到 nums1 数组的尾部…...

防火墙在企业园区出口安全方案中的应用(ENSP实现)

拓扑图 需求&#xff1a; 1、企业出口网关设备必须具备较高的可靠性&#xff0c;为了避免单点故障&#xff0c;要求两台设备形成双机热备状态。当一台设备发生故障时&#xff0c;另一台设备会接替其工作&#xff0c;不会影响业务正常运行。 2、企业从两个ISP租用了两条链路&…...

单片机学习笔记---矩阵键盘密码锁

目录 一&#xff0c;设置密码按键 1.设置密码区域 2.设置输入的数字左移 3.设置记录按键的次数 二&#xff0c;设置确认键 1.密码正确时显示OK 2.密码错误时显示ERR 3.密码错误恢复初始状态重输 三&#xff0c;设置取消键 学了这么久&#xff0c;迫不及待想要做一个密…...

8-小程序数据promise化、共享、分包

小程序API Promise化 wx.requet 官网入口 默认情况下&#xff0c;小程序官方异步API都是基于回调函数实现的 wx.request({method: , url: , data: {},header: {content-type: application/json // 默认值},success (res) {console.log(res.data)},fail () {},complete () { }…...

[HTML]Web前端开发技术18(HTML5、CSS3、JavaScript )HTML5 基础与CSS3 应用——喵喵画网页

希望你开心&#xff0c;希望你健康&#xff0c;希望你幸福&#xff0c;希望你点赞&#xff01; 最后的最后&#xff0c;关注喵&#xff0c;关注喵&#xff0c;关注喵&#xff0c;佬佬会看到更多有趣的博客哦&#xff01;&#xff01;&#xff01; 喵喵喵&#xff0c;你对我真的…...

Threejs 展示——obj 格式模型导入

文章目录 需求分析1. HTML版本2. Vue 版本 需求 导入obj 格式的模型数据 分析 .obj&#xff1a;Wavefront OBJ 格式&#xff0c;是一种广泛使用的三维模型文件格式。预览 .obj格式文件的软件可点此下载需要准备两种格式的数据&#xff0c;如下所示 1. HTML版本 html <!…...

深入浅出 diffusion(3):pytorch 实现 diffusion 中的 U-Net

导入python包 import mathimport torch import torch.nn as nn import torch.nn.functional as F silu激活函数 class SiLU(nn.Module): # SiLU激活函数staticmethoddef forward(x):return x * torch.sigmoid(x) 归一化设置 def get_norm(norm, num_channels, num_groups)…...

C#使用RabbitMQ-2_详解工作队列模式

简介 &#x1f340;RabbitMQ中的工作队列模式是指将任务分配给多个消费者并行处理。在工作队列模式中&#xff0c;生产者将任务发送到RabbitMQ交换器&#xff0c;然后交换器将任务路由到一个或多个队列。消费者从队列中获取任务并进行处理。处理完成后&#xff0c;消费者可以向…...

Day37 56合并区间 738单调递增的数字 968监控二叉树

56 合并区间 给出一个区间的集合&#xff0c;请合并所有重叠的区间。 示例 1: 输入: intervals [[1,3],[2,6],[8,10],[15,18]]输出: [[1,6],[8,10],[15,18]]解释: 区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6]. class Solution { public:vector<vector<int>>…...

【Android】在WSA安卓子系统中进行新实验性功能试用与抓包(2311.4.5.0)

前言 在根据几篇22和23的WSA抓包文章进行尝试时遇到了问题&#xff0c;同时发现新版Wsa的一些实验性功能能优化抓包配置时的一些步骤&#xff0c;因而写下此篇以作记录。 Wsa版本&#xff1a;2311.40000.5.0 本文出现的项目&#xff1a; MagiskOnWSALocal MagiskTrustUserCer…...

【服务器】服务器的管理口和网口

服务器通常会有两种不同类型的网络接口&#xff0c;即管理口&#xff08;Management Port&#xff09;和网口&#xff08;Ethernet Port&#xff09;&#xff0c;它们的作用和用途不同。 一、管理口 管理口通常是用于服务器管理的网络接口&#xff0c;也被称为外带网卡或带外接…...

一个小例子,演示函数指针

结构体里经常看到函数指针的写法&#xff0c;函数指针其实就是函数的名字。但是结构体里你要是直接把一个函数摆上去&#xff0c;那就变成成员变量&#xff0c;就会发生混乱 1. 函数指针 #include <unistd.h> #include <stdio.h>struct Kiwia{void (*func)(int )…...

python12-Python的字符串之使用input获取用户输入

input()函数用于向用户生成一条提示,然后获取用户输入的内容。由于input0函数总会将用户输入的内容放入字符串中,因此用户可以输入任何内容,input()函数总是返回一个字符串。例如如下程序。 # !/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2024/01# @Author : Lao…...

【代码随想录-数组】移除元素

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老导航 檀越剑指大厂系列:全面总结 jav…...

springboot事务管理

/*spring事务管理注解:Transactional位置:业务(service)层的方法上、类上、接口上作用:将当前方法交给spring进行事务管理&#xff0c;方法执行前&#xff0c;开启事务:成功执行完毕&#xff0c;提交事务:出现常&#xff0c;回滚事务需要在配置文件是加上开启spring事务yml文件…...

数据结构——链式二叉树(2)

目录 &#x1f341;一、二叉树的销毁 &#x1f341;二、在二叉树中查找某个数&#xff0c;并返回该结点 &#x1f341;三、LeetCode——检查两棵二叉树是否相等 &#x1f315;&#xff08;一&#xff09;、题目链接&#xff1a;100. 相同的树 - 力扣&#xff08;LeetCode&a…...

spring-boot-starter-validation常用注解

文章目录 一、使用二、常用注解三、Valid or Validated &#xff1f;四、分组校验1. 分组校验的基本概念2. 定义验证组3. 应用分组到模型4. 在控制器中使用分组5. 总结 一、使用 要使用这些注解&#xff0c;首先确保在你的 Spring Boot 应用的 pom.xml 文件中添加了 spring-bo…...

AF700 NHS 酯,AF 700 Succinimidyl Ester,一种明亮且具有光稳定性的近红外染料

AF700 NHS 酯&#xff0c;AF 700 Succinimidyl Ester&#xff0c;一种明亮且具有光稳定性的近红外染料&#xff0c;AF700-NHS-酯&#xff0c;具有水溶性和 pH 值不敏感性 您好&#xff0c;欢迎来到新研之家 文章关键词&#xff1a;AF700 NHS 酯&#xff0c;AF 700 Succinimid…...

C#常见内存泄漏

背景 在开发中由于对语言特性不了解或经验不足或疏忽&#xff0c;往往会造成一些低级bug。而内存泄漏就是最常见的一个&#xff0c;这个问题在测试过程中&#xff0c;因为操作频次低&#xff0c;而不能完全被暴露出来&#xff1b;而在正式使用时&#xff0c;由于使用次数增加&…...

Xmind安装到指定目录

Xmind安装到指定目录 默认情况下安装包自动引导安装在C盘&#xff08;注册表默认位置&#xff09; T1:修改注册表&#xff0c;比较麻烦 T2:安装时命令行指定安装位置&#xff0c;快捷省事 1&#xff09;下载安装包&#xff08;exe可执行文件&#xff09; 2&#xff09;安装…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

JS手写代码篇----使用Promise封装AJAX请求

15、使用Promise封装AJAX请求 promise就有reject和resolve了&#xff0c;就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...