当前位置: 首页 > news >正文

【深度学习实验】TensorBoard使用教程【SCALARS、IMAGES、TIME SERIES】

文章目录

  • 一、环境
  • 二、TensorBoard
    • 1. 使用TensorBoardX
      • a. 安装TensorBoardX
      • b. 使用示例
    • 2. PyTorch内置的TensorBoard
    • 3. 启动TensorBoard服务
  • 三、实战
    • 1. SCALARS(标量)
      • 找不同
        • 关卡1
        • 关卡2
        • 关卡3
        • 关卡4
      • Show data download links
      • Ignore outliers in chart scaling
      • Smoothing
      • Horizontal Axis
        • STEP(迭代次数)
        • RELATIVE(相对值)
        • WALL(时间)
      • Runs
    • 2. IMAGES(图像)
      • Show actual image size
      • Brightness adjustment
      • Contrast adjustment
      • Runs
      • 查看不同step
    • 3. TIME SERIES
  • 四、报错
    • 1. AttributeError: module 'PIL.Image' has no attribute 'ANTIALIAS'
      • 解决方案
    • 2. TypeError: Descriptors cannot be created directly.
      • 解决方案

一、环境

conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
conda install jupyter
conda install matplotlib TensorBoard
conda install tensorboardX

二、TensorBoard

1. 使用TensorBoardX

  TensorBoardX 是一个可以在PyTorch中使用TensorBoard的第三方库,可以使用它来记录训练过程中的损失、准确率、模型参数直方图等信息,并在TensorBoard中进行可视化展示。

a. 安装TensorBoardX

conda install tensorboardX

pip install tensorboardX

b. 使用示例

在PyTorch中使用TensorBoardX来记录训练过程中的损失:

from tensorboardX import SummaryWriter# 创建一个SummaryWriter对象,指定记录日志的目录
writer = SummaryWriter('logs')for epoch in range(num_epochs):# 在训练循环中记录损失writer.add_scalar('Train/Loss', train_loss, epoch)# 训练结束后关闭SummaryWriter
writer.close()

2. PyTorch内置的TensorBoard

  从PyTorch 1.2版本开始,PyTorch也增加了内置的TensorBoard支持:可以使用torch.utils.tensorboard.SummaryWriter来记录训练过程中的信息,方法与上面的示例类似。

from torch.utils.tensorboard import SummaryWriter

3. 启动TensorBoard服务

  使用下述格式命令来启动TensorBoard(默认端口6006):

tensorboard --logdir=path_to_your_logs

例:

 tensorboard --logdir=./Norm --port=6005

日志文件保存目录为Norm,TensorBoard将运行在6005端口上

在这里插入图片描述

三、实战

# Create a SummaryWriter for logging information to TensorBoard
writer = SummaryWriter()for epoch in range(num_epochs):print('Starting epoch {}...'.format(epoch), end=' ')# Iterate through the data loaderfor i, (images, labels) in enumerate(data_loader):step = epoch * len(data_loader) + i + 1real_images = Variable(images).to(device)labels = Variable(labels).to(device)generator.train()d_loss = 0# Perform multiple discriminator training stepsfor _ in range(n_critic):d_loss = discriminator_train_step(len(real_images), discriminator,generator, d_optimizer, criterion,real_images, labels,device)# Perform a single generator training stepg_loss = generator_train_step(batch_size, discriminator, generator, g_optimizer, criterion, device)# Write the losses to TensorBoardwriter.add_scalars('scalars', {'g_loss': g_loss, 'd_loss': (d_loss / n_critic)}, step)  # Display sample images at certain stepsif step % display_step == 0:generator.eval()z = Variable(torch.randn(9, 100)).to(device)labels = Variable(torch.LongTensor(np.arange(9))).to(device)sample_images = generator(z, labels).unsqueeze(1)grid = make_grid(sample_images, nrow=3, normalize=True)writer.add_image('sample_image', grid, step)print('Done!')
  • 数据格式:

    • 默认:
      在这里插入图片描述
    • 重命名
      在这里插入图片描述
  • 终端输入:

 tensorboard --logdir=./Norm

在这里插入图片描述

  点击上述链接(浏览器中输入http://localhost:6006),打开TensorBoard的网页界面:

在这里插入图片描述

  当使用TensorBoard对深度学习模型进行可视化时,常用的功能包括 Scalars(标量)、Images(图像)和Time Series(时间序列):

1. SCALARS(标量)

  Scalas 在 TensorBoard 中用于呈现训练过程中的标量值,例如损失函数值、准确率、学习率等。

  • 通过 Scalars 功能,可以观察这些标量值随着训练步骤的变化而变化的趋势图;
  • 可以同时对比多个标量,以便分析它们之间的关系和趋势。

找不同

关卡1

在这里插入图片描述
在这里插入图片描述

关卡2

toggle y-axis log scale(切换 Y 轴对数刻度)
在这里插入图片描述

关卡3

Alt+Scroll to Zoom(Alt+鼠标滚动以缩放)
在这里插入图片描述

在这里插入图片描述

关卡4

fit domain to data(说人话就是:缩放后一键复原)
在这里插入图片描述

Show data download links

在这里插入图片描述
在这里插入图片描述
开启下载~
在这里插入图片描述

Ignore outliers in chart scaling

在这里插入图片描述

Smoothing

曲线平滑:
在这里插入图片描述

Horizontal Axis

STEP(迭代次数)

在这里插入图片描述

RELATIVE(相对值)

在这里插入图片描述

WALL(时间)

在这里插入图片描述
在这里插入图片描述

Runs

选择要显示的数据(左面方框多选,右面圆圈单选):
(对比实验结果)
在这里插入图片描述
在这里插入图片描述

2. IMAGES(图像)

  Images 功能可用于显示模型生成的图像,以及模型中间层的激活值、过滤器等图片信息。

  • 可以通过 Images 功能观察训练过程中生成的样本图片;
  • 也可以通过可视化中间层的特征图像,从而更好地理解模型的学习过程和特征提取能力。

Show actual image size

显示实际图像尺寸
在这里插入图片描述
在这里插入图片描述

Brightness adjustment

亮度调节
在这里插入图片描述
在这里插入图片描述

右侧RESET恢复默认值

Contrast adjustment

对比度调整
在这里插入图片描述
在这里插入图片描述

Runs

选择
在这里插入图片描述

查看不同step

滑动~
在这里插入图片描述

3. TIME SERIES

  合并上述内容
在这里插入图片描述

四、报错

1. AttributeError: module ‘PIL.Image’ has no attribute ‘ANTIALIAS’

在这里插入图片描述

解决方案

在pillow的10.0.0版本中,ANTIALIAS方法被删除了,使用新的方法即可:

Image.LANCZOS
Image.Resampling.LANCZOS

在这里插入图片描述

2. TypeError: Descriptors cannot be created directly.

TypeError: Descriptors cannot be created directly.
If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
If you cannot immediately regenerate your protos, some other possible workarounds are:1. Downgrade the protobuf package to 3.20.x or lower.2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).

在这里插入图片描述
protobuf的版本太高~

解决方案

conda install tensorboard 
## Package Plan ##environment location: E:\Software\anaconda3\envs\DLadded / updated specs:- tensorboardThe following packages will be downloaded:package                    |            build---------------------------|-----------------werkzeug-2.3.8             |  py311haa95532_0         445 KB  defaults------------------------------------------------------------Total:         445 KBThe following NEW packages will be INSTALLED:protobuf           anaconda/pkgs/main/win-64::protobuf-3.20.3-py311hd77b12b_0werkzeug           anaconda/pkgs/main/win-64::werkzeug-2.3.8-py311haa95532_0Proceed ([y]/n)?

在这里插入图片描述

相关文章:

【深度学习实验】TensorBoard使用教程【SCALARS、IMAGES、TIME SERIES】

文章目录 一、环境二、TensorBoard1. 使用TensorBoardXa. 安装TensorBoardXb. 使用示例 2. PyTorch内置的TensorBoard3. 启动TensorBoard服务 三、实战1. SCALARS(标量)找不同关卡1关卡2关卡3关卡4 Show data download linksIgnore outliers in chart sc…...

渗透测试(12)- WireShark 网络数据包分析

目录 1、WireShack 简介 2、WireShark 基本使用方法 3、 WireShack 抓包分析 3.1 Hypertext Transfer Protocol (应用层) 3.2 Transmission Control Protocol (传输层) 3.3 Internet Protocol Version 4(网络层) 3.4 Ethernet Il (链路层): 数据链路层以太网头部信息 …...

XSS_Labs靶场通关笔记

每一关的方法不唯一;可以结合源码进行分析后构造payload; 通关技巧(四步): 1.输入内容看源码变化; 2.找到内容插入点; 3.测试是否有过滤; 4.构造payload绕过 第一关 构造paylo…...

基于本地缓存制作一个分库分表的分布式ID生成器

引言: 代码在 https://gitee.com/lbmb/mb-live-app 中 【mb-live-id-generate-provider】 模块里面 如果喜欢 希望大家给给star 项目还在持续更新中。 背景介绍 项目整体架构是 基于springboot 3.0 开发 rpc 调用采用 dubbo 注册配置中心 使用 nacos 采用shardin…...

美易平台:金融市场的晴雨表与创新服务的融合

在金融市场中,利率的微妙变动往往预示着经济活动的脉动,而美国纽约联储发布的最新数据显示,上个交易日(1月25日)担保隔夜融资利率(SOFR)小幅上升至5.32%,而同期有效的联邦基金利率保…...

文旅项目包括什么?

文旅项目是指与文化和旅游相结合的项目,旨在通过提供丰富的文化体验和旅游服务来吸引游客,促进地方经济发展。 文旅项目通常包括多个方面,以下是对每块内容的详细介绍: 文化旅游景区:这类项目以展示人类文化和历史遗产…...

Pointnet++改进优化器系列:全网首发AdamW优化器 |即插即用,实现有效涨点

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入AdamW优化器,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一 2.2 步骤二 2.3 步...

stm32 FOC 电机介绍

今年开始学习foc控制无刷电机,这几天把所学整理一下,记录一下知识内容。 前言: 为什么要学习FOC? 1.电机控制是自动化控制领域重要一环。 2.目前直流无刷电机应用越来越广泛,如无人机、机械臂、云台、仿生机器人等等。 需要什么基础&…...

【Linux】进程通信——管道

欢迎来到Cefler的博客😁 🕌博客主页:折纸花满衣 🏠个人专栏:题目解析 🌎推荐文章:【LeetCode】winter vacation training 目录 📋进程通信的目的📋管道匿名管道pipe函数创…...

3d gaussian splatting笔记(paper部分翻译)

本文为3DGS paper的部分翻译。 基于点的𝛼混合和 NeRF 风格的体积渲染本质上共享相同的图像形成模型。 具体来说,颜色 𝐶 由沿射线的体积渲染给出: 其中密度 𝜎、透射率 𝑇 和颜色 c 的样本是沿着射线以…...

TCP 三次握手以及滑动窗口

TCP 三次握手 简介: TCP 是一种面向连接的单播协议,在发送数据前,通信双方必须在彼此间建立一条连接。所谓的 “ 连接” ,其实是客户端和服务器的内存里保存的一份关于对方的信息,如 IP 地址、端口号等。 TCP 可以…...

Vue3 Cli5按需导入ElementPlus

1、安装环境 node:16.20.0 vue:3.2.36 vue/cli:5.0.0 element-plus:2.2.25 element-plus/icons-vue:2.0.10 unplugin-auto-import:0.16.1 // 当前环境用这个包,不然会提示各种错误 unplugin-vu…...

playwright自动化项目搭建

具备功能 关键技术: pylaywright测试库pytest单元测试框架pytest-playwright插件 非关键技术: pytest-html插件pytest-rerunfailures插件seldom 测试框架 实现功能: 元素定位与操作分离失败自动截图并保存到HTML报告失败重跑可配置不同…...

mysql字符集

一、查看字符集 //查看数据库字符集 SHOW CREATE DATABASE databasename; //查看表字符集 SHOW CREATE TABLE tablename; //查看指定表全部字段字符集 show full columns from table; 二、修改字符集 将超出utf8字符集范围的字符比如𪨧插入到utf8字符集的字…...

Elasticsearch:聊天机器人、人工智能和人力资源:电信公司和企业组织的成功组合

作者:来自 Elastic Jrgen Obermann, Piotr Kobziakowski 让我们来谈谈大型企业人力资源领域中一些很酷且改变游戏规则的东西:生成式 AI 和 Elastic Stack 的绝佳组合。 现在,想象一下大型电信公司的典型人力资源部门 — 他们正在处理一百万件…...

[AIGC大数据基础] Flink: 大数据流处理的未来

Flink 是一个分布式流处理引擎,它被广泛应用于大数据领域,具有高效、可扩展和容错的特性。它是由 Apache 软件基金会开发和维护的开源项目,并且在业界中受到了广泛认可和使用。 文章目录 什么是 FlinkFlink 的特点真正的流处理高性能和低延迟…...

数据结构之线性表(一般的线性表)

前言 接下来就开始正式进入数据结构环节了,我们先从线性表开始。 线性表 线性表(linear list)也叫线性存储结构,即数据元素的逻辑结构为线性的数据表,它是数据结构中最简单和最常用的一种存储结构,专门存…...

uniapp安卓android离线打包本地打包整理

离线打包准备 下载Android studio 1.准备资源hbuilder 2.准备离线SDK 最新android平台SDK下载最新android平台SDK下载 3.离线打包key申请 4.直接导入HBuilder-Integrate-AS工程,直接运行simpleDemo项目即可 5.安装java 1.8 jdk-8u151-windows-x64 6.遇到这个报错报错Caus…...

vmware安装centos8-stream

VMware与CentOS8-stream的配置教程【2022-9-5】_centos stream 8-CSDN博客 启动进入后配置网络,/etc/sysconfig/network-scripts/网卡 vmware上的centos8没有网络_主机时wifi上网,centos 8 安装后无法连接网络 解决办法-CSDN博客 centos8配置网络_centos8网络配置…...

使用HttpServletRequestWrapper解决web项目request数据流无法重复读取的问题

在做web项目开发时,我们有时候需要做一些前置的拦截判断处理,比如非法参数校验,防攻击拦截,统一日志处理等,而请求参数如果是form表单提交还好处理;对于json这种输入流的数据就会有问题,统一处理…...

从CNN ,LSTM 到Transformer的综述

前情提要:文本大量参照了以下的博客,本文创作的初衷是为了分享博主自己的学习和理解。对于刚开始接触NLP的同学来说,可以结合唐宇迪老师的B站视频【【NLP精华版教程】强推!不愧是的最完整的NLP教程和学习路线图从原理构成开始学&a…...

Git学习笔记:1 基础命令详解

文章目录 Git基础命令详解: Git基础命令详解: git commit 用法:git commit -m "commit message"功能:将暂存区(stage)中的所有更改提交到本地仓库的当前分支,同时提供一个简短的提交信…...

【服务器】安装宝塔面板

目录 🌺【前言】 🌼【前提】连接服务器 🌷方式一 使用工具登录服务器如Xshell 🌷方式二 阿里云直接连接 🌼 1. 安装宝塔 🌷获取安装脚本 方式一 使用下面提供的脚本安装 方式二 使用官网提供的脚本…...

开源模型应用落地-业务优化篇(一)

一、前言 通过参与“开源模型应用落地-业务整合系列篇”的学习,我们已经成功建立了基本的业务流程。然而,这只是迈出了万里长征的第一步。现在我们要对整个项目进行优化,以提高效率。我们计划利用线程池来加快处理速度,使用redis来实现排队需求,以及通过多级环境来减轻负载…...

【遥感专题系列】影像信息提取之——基于专家知识的决策树分类

可以将多源数据用于影像分类当中,这就是专家知识的决策树分类器,本专题以ENVI中Decision Tree为例来叙述这一分类器。 本专题包括以下内容: 专家知识分类器概述知识(规则)定义ENVI中Decision Tree的使用 概述 基于知…...

lqb日志08

一只小蒟蒻备考蓝桥杯的日志 文章目录 笔记坐标相遇判断工作调度问题(抽象时间轴绘制) 刷题心得小结 笔记 坐标相遇判断 我是小懒虫,碰了一下运气,开了个“恰当”的数(7000)如果,7000次还不能…...

SAP EXCEL上传如何实现指定读取某一个sheet页(ALSM_EXCEL_TO_INTERNAL_TABLE)

如何读取指定的EXCEL sheet 页签,比如要读取下图中第二个输出sheet页签 具体实现方法如下: 拷贝标准的函数ALSM_EXCEL_TO_INTERNAL_TABLE封装成一个自定义函数ZCALSM_EXCEL_TO_INTERNAL_TABLE 在自定义函数导入参数页签新增一个参数SHEET_NAME 在源代码…...

奇怪问题说 - 测试篇

文章目录 1.什么是软件测试2.软件测试和开发的区别3.软件测试的发展:4.软件测试岗位5.软件测试在不同类型公司的定位6.一个优秀的软件测试人员具备的素质6.1综合能力6.2掌握自动化测试技术6.3优秀的测试用例设计能力6.4探索性思维6.5有责任感和一定的压力 7.软件测试…...

中国新能源汽车持续跑出发展“加速度”,比亚迪迎来向上突破

2023年已经过去,对于汽车圈而言,2023年是中国车市的分水岭,在这一年,中国汽车工业70年以来首次进入全球序列,自主品牌强势霸榜,销量首次超过合资车。要知道,这是自大众于1984年进入中国市场成立…...

chatGPT辅助写硕士毕业论文

一、写作顺序 1.标题、研究问题、研究方法 2.文献综述(占比1/5-1/6) 3.论证章节 4.结论、不足、启示 5.处理图表、参考文献的格式 6.绪论或引言 7.摘要、关键词 8.查重、装订 http://【硕士毕业论文写不下去,多亏听了张博士的论文写…...