stable diffusion学习笔记——文生图(一)
模型设置
基本模型
基本模型也就是常说的checkpoint(大模型),基本模型决定了生成图片的主体风格。
如上图所示,基本模型的后缀为.safetensors。需要存放在特定的文件夹下。
如果用的是启动器,可以在启动器内直接下载。
vae模型
vae模型的全名叫变分自编码器,这里先不讲解原理。在AI绘图中主要的作用是起到画面滤镜的效果。目前较多的大模型都是自带vae的,因此这里不需要额外设置,修改成NONE即可。
在启动器中也可以直接下载。如果生成画面的饱和度看起来不太正常,可以检查下是不是使用了不合适的vae模型。
终止层数
可以将stable diffusion看做一个扩散模型,终止层数就是指到倒数第几层停止。
终止层数设置的很小,提示词的体现在画面中就更多,但是运算时间会增加;反之,终止层数设置的较大,会导致处理提前停止,丢失的提示词信息会更多,运算时间会相应的减少。
通常这个值默认为2,即倒数第二层的时候停止处理,我们通常不需要修改这个值。
提示词书写
stable diffusion通过提示词来控制图像中应当出现以及不应当出现的元素。
正向提示词
正向提示词用于描述图片想要表现出的内容。正向提示词的语法如下:
(1girl):权重为1.1倍
((1girl)):权重为1.1*1.1 = 1.21倍
evening_gown:1.2:权重为1.2倍
[colorful]:权重为0.9倍
提示词权重越高,在画面中出现的概率越大。
反向提示词
反向提示词主要作用是抑制图像中的元素。提示词的语法与正向提示词相同。
图片生成
图片生成部分涉及的配置较多。
采样方法与迭代步数
采样的原理可以参考官网:Stable Diffusion Samplers: A Comprehensive Guide - Stable Diffusion Art (stable-diffusion-art.com)
简单讲,stable diffusion会随机生成一个充满噪声点的原始图像,随后一步步迭代去除噪声,最终得到一张清晰的图片。
在这个过程中,去噪的执行步数就是迭代步数;去噪的方式就是采样方法。
显然,迭代步数过低会导致画面不清晰;而迭代步数过高也会增加处理时间。通常迭代步数在20步之后画面的变化就不明显了。因此迭代步数设置为20即可。
采样方法涉及到较多的数学原理,刚上手的话可以参考如下结论:
如果你想使用快速且质量不错的东西,那么最好的选择是DPM++2M Karras,UniPC
如果你想要高质量的图像并且不关心收敛,那么不错的选择是DPM++SDE Karras
如果你喜欢稳定、可重复的图像,请避免使用任何ancestral samplers(后缀加a的采样器)。
如果你喜欢简单的东西,Euler和Heun是不错的选择
图片尺寸
设置图片尺寸受以下因素影响:
- 显卡的显存大小。图片的尺寸(分辨率)设置过大会导致爆显存,无法生成图片。
- 大模型设置时训练图片的大小。很多大模型是用分辨率不高的图片训练的,这样的模型生成图片时尽量不要把图片尺寸设置的过大;部分模型使用分辨率高的图片训练(通常发布网站上会有说明),这样的模型生成图片时要将图片尺寸设置大一些,不然会很影响出图效果。
- 预期的构图。如果预期得到一张人物的全身图,适当减少图片尺寸的宽高比会有较好的表现。
同样比例的图片精度不等于放大后为同样比例的图片精度。比如原本尺寸为1024*1024的图片精度不如512*512经过放大算法放大至1024*1024的图片精度,这是因为“改善总是比创造更容易的”,1024*1024会和原来一样生成瑕疵,但重绘是将这些瑕疵渐渐减少。
综上,大部分生成图片的case中,应当以小分辨率生成图片,再用高分辨率修复生成更加高清的图片。
引导系数
引导系数用于控制模型应尊重你的提示的程度。如果CFG值太低,稳定扩散将忽略你的提示。太高时图像的颜色会饱和。
通常设置在4-10之间,可以先用默认值7观察下效果。
种子
种子控制图像的内容。生成的每个图像都有自己的种子值。如果设置为-1,stable diffusion将使用随机种子值;如果设置为一个固定的种子值(比如用那个绿色的回收图标定为之前的图片样式),你可以增加或替换关键词达到在图片上增加或替换的效果。
简单讲,如果想要每次生成一张完全随机的图片,应当把种子设置为-1。如果想要一定程度上复制某张图片,应当将该图片的种子设置为当前种子值。
相关文章:

stable diffusion学习笔记——文生图(一)
模型设置 基本模型 基本模型也就是常说的checkpoint(大模型),基本模型决定了生成图片的主体风格。 如上图所示,基本模型的后缀为.safetensors。需要存放在特定的文件夹下。 如果用的是启动器,可以在启动器内直接下载。…...

Linux下安装openresty
Linux下安装openresty 十一、Linux下安装openresty11.1.概述11.2.下载OpenResty并安装相关依赖:11.3.使用wget下载:11.4.解压缩:11.5.进入OpenResty目录:11.6.编译和安装11.7.进入OpenResty的目录,找到nginx:11.8.在conf目录下的nginx.conf添…...

【IM】如何保证消息可用性(一)
目录 1. 基本概念1.1 长连接 和 短连接1.2 PUSH模式和PULL模式 2. 背景介绍2.1 理解端到端的思想 3. 方案选型3.1 技术挑战3.2 技术目标 1. 基本概念 在讲解消息可用性之前,需要理解几个通信领域的基本概念。 1.1 长连接 和 短连接 什么是长连接,短连接…...
js直接下载附件和通过blob数据类型下载文件
js下载文件方式有使用a标签的,也有直接用window.open的,还有用form表单的;这里采用的是a标签的下载方式,一种是url直接下载,另一种是文件的blob数据类型进行下载。 文件blob数据类型的获取一般是后端返回文件的二进制流…...

第2章-神经网络的数学基础——python深度学习
第2章 神经网络的数学基础 2.1 初识神经网络 我们来看一个具体的神经网络示例,使用 Python 的 Keras 库 来学习手写数字分类。 我们这里要解决的问题是, 将手写数字的灰度图像(28 像素28 像素)划分到 10 个类别 中(0…...
【Docker】Docker学习⑧ - Docker仓库之分布式Harbor
【Docker】Docker学习⑧ - Docker仓库之分布式Harbor 一、Docker简介二、Docker安装及基础命令介绍三、Docker镜像管理四、Docker镜像与制作五、Docker数据管理六、网络部分七、Docker仓库之单机Dokcer Registry八、 Docker仓库之分布式Harbor1 Harbor功能官方介绍2 安装Harbor…...

一行命令在 wsl-ubuntu 中使用 Docker 启动 Windows
在 wsl-ubuntu 中使用 Docker 启动 Windows 0. 背景1. 验证我的系统是否支持 KVM?2. 使用 Docker 启动 Windows3. 访问 Docker 启动的 Windows4. Docker Hub 地址5. Github 地址 0. 背景 我们可以在 Windows 系统使用安装 wsl-ubuntu,今天玩玩在 wsl-ub…...

Datawhale 组队学习之大模型理论基础 Task7 分布式训练
第8章 分布式训练 8.1 为什么分布式训练越来越流行 近年来,模型规模越来越大,对硬件(算力、内存)的发展提出要求。因为内存墙的存在,单一设持续提高芯片的集成越来越困难,难以跟上模型扩大的需求。 为了…...
05-使用结构体构建相关数据
上一篇: 04-了解所有权 结构体(struct)是一种自定义数据类型,可以将多个相关值打包命名,组成一个有意义的组。如果你熟悉面向对象的语言,那么结构体就像是对象的数据属性。在本章中,我们将对元组…...

【Android】Android中的系统镜像由什么组成?
文章目录 总览Boot Loader 的加锁与解锁Boot 镜像内核RAM diskARM 中的设备树 (Device Tree) /System 和/Data 分区镜像参考 总览 各种Android设备都只能刷专门为相应型号的设备定制的镜像。 厂商会提供一套系统镜像把它作为“出厂默认”的 Android 系统刷在设备上。 一个完…...
仿真机器人-深度学习CV和激光雷达感知(项目2)day7【ROS关键组件】
文章目录 前言Launch 文件了解 XML 文件Launch 文件作用Launch 文件常用标签实例--作业1的 Launch 文件TF Tree介绍发布坐标变换--海龟例程获取坐标变换--海龟自动跟随例程rqt_工作箱前言 💫你好,我是辰chen,本文旨在准备考研复试或就业 💫本文内容是我为复试准备的第二个…...

解锁一些SQL注入的姿势
昨天课堂上布置了要去看一些sql注入的案例,以下是我的心得: 1.新方法 打了sqli的前十关,我发现一般都是联合查询,但是有没有不是联合查询的方法呢…...

Qt 拖拽事件示例
一、引子 拖拽这个动作,在桌面应用程序中是非常实用和具有很友好的交互体验的。我们常见的譬如有,将文件拖拽到某个窗口打开,或者拖拽文件到指定位置上传;在绘图软件中,选中某个模板、并拖拽到画布上,画布上变回绘制该模板的图像… 诸如此类,数不胜数。 那么,在Qt中我…...

Linux:命名管道及其实现原理
文章目录 命名管道指令级命名管道代码级命名管道 本篇要引入的内容是命名管道 命名管道 前面的总结中已经搞定了匿名管道,但是匿名管道有一个很严重的问题,它只允许具有血缘关系的进程进行通信,那如果是两个不相关的进程进行通信࿰…...
实习记录——第五天
今天我的心情不是很美丽,昨天晚上没怎么睡好,因为我一直在想离不离开实验室?该怎么说的事情?但是又觉得这个项目还没有完全结束,冒昧提这个事情是不是不好?最终也没得出一个结论,晚上睡得也不踏…...

Kotlin 教程(环境搭建)
Kotlin IntelliJ IDEA环境搭建 IntelliJ IDEA 免费的社区版下载地址:Download IntelliJ IDEA – The Leading Java and Kotlin IDE 下载安装后,我们就可以使用该工具来创建项目,创建过程需要选择 SDK, Kotlin 与 JDK 1.6 一起使…...

04.领域驱动设计:了解聚合和聚合根,怎样设计聚合-学习总结
目录 1、概述 2、聚合 3、聚合根 4、怎么设计聚合 4.1 聚合的构建过程主要步骤 第 1 步:采用事件风暴。 第 2 步:选出聚合根。 第 3 步:找出与聚合根关联的所有紧密依赖的实体和值对象。 第 4 步:画出对象的引用和依赖模型…...

cmake-find_package链接第三方库
文章目录 基本调用形式和模块模式使用方式 之前我们是使用了绝对路径来链接OpenCV第三方库,但是现在很多库一般会自己写一些cmake文件提供给用户,用户可以直接使用其中的内置变量即可。使用的命令就是find_package。 基本调用形式和模块模式 find_packa…...

obsidian阅读pdf和文献——与zotero连用
参考: 【基于Obsidian的pdf阅读、标注,构建笔记思维导图,实现笔记标签化、碎片化,便于检索和跳转】 工作流:如何在Obsidian中阅读PDF - Eleven的文章 - 知乎 https://zhuanlan.zhihu.com/p/409627700 操作步骤 基于O…...

走方格(动态规划)
解题思路: 找边界,即行为1,列为1。 拆分问题,拆分成一次走一步,只能向右或者向下走。 解题代码: public static void main(String[] args) {int [][]arrnew int[31][31];Scanner scnew Scanner(Sys…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...