当前位置: 首页 > news >正文

【揭秘】ForkJoinTask全面解析

【揭秘】ForkJoinTask全面解析 - 程序员古德

内容摘要

ForkJoinTask的显著优点在于其高效的并行处理能力,它能够将复杂任务拆分成多个子任务,并利用多核处理器同时执行,从而显著提升计算性能,此外,ForkJoinTask还提供了简洁的API和强大的任务管理机制,使得开发者能够更轻松地编写并行化代码,高效地利用系统资源。

核心概念

ForkJoinTask在Java中主要用来解决可以并行处理的任务的分解与合并问题,它是行计算框架ForkJoinFramework的核心组件,提供了一种高效的方式来利用多核处理器,它解决了以下几个方面的问题:

  1. 任务分解:很多计算密集型或数据处理密集型的问题可以分解为更小的子任务,例如,对一个大型数组进行排序或处理大量数据记录时,通常可以将数组或数据记录集分割成多个较小的部分,然后并行处理这些部分,ForkJoinTask提供了将任务递归分解成更小任务的方式,直到任务足够小以至于顺序执行比并行执行更高效。
  2. 任务并行化:通过ForkJoinPoolForkJoinTask能够将分解后的子任务分配给不同的线程执行,从而实现并行处理,这充分利用了多核处理器的计算能力,提高了程序的执行效率。
  3. 任务结果合并:在子任务并行执行完成后,需要将它们的结果合并以得到最终的结果,ForkJoinTask提供了合并子任务结果的机制,确保所有子任务的结果都能正确地组合在一起。
  4. 工作窃取ForkJoinPool还实现了工作窃取算法,这意味着当一个线程完成了它自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,从而减少了线程的空闲时间,提高了资源利用率。

因此,ForkJoinTask是用来处理可并行化任务的强大工具,它通过任务分解、并行化、结果合并和工作窃取等机制,有效地提高了程序的执行效率和资源利用率。

#代码案例

下面是一个使用了ForkJoinTask的简单示例,演示了如何分解一个任务,使其并行处理一个整数数组,并计算数组中所有元素的和。

先创建一个SumTask类,它继承自RecursiveTask<Integer>,用于计算数组元素的和,如果数组的大小超过一个阈值(例如10),则任务将递归地分解为两个子任务,分别处理数组的前半部分和后半部分,否则,任务将顺序计算数组的和,如下代码:

import java.util.concurrent.RecursiveTask;  public class SumTask extends RecursiveTask<Integer> {  private static final int THRESHOLD = 10; // 阈值,当数组大小小于这个值时,不再进行任务分解  private final int[] array;  private final int start;  private final int end;  public SumTask(int[] array) {  this(array, 0, array.length);  }  private SumTask(int[] array, int start, int end) {  this.array = array;  this.start = start;  this.end = end;  }  @Override  protected Integer compute() {  // 如果任务足够小,直接计算结果  if (end - start <= THRESHOLD) {  int sum = 0;  for (int i = start; i < end; i++) {  sum += array[i];  }  return sum;  } else {  // 否则,将任务分解为两个子任务  int middle = (start + end) / 2;  SumTask leftTask = new SumTask(array, start, middle);  SumTask rightTask = new SumTask(array, middle, end);  // 异步执行子任务并等待结果  return leftTask.fork().join() + rightTask.fork().join();  }  }  
}

如下client代码(main函数),如下:

import java.util.concurrent.ForkJoinPool;  
import java.util.concurrent.ForkJoinTask;  public class ForkJoinTaskExample {  public static void main(String[] args) {  int[] array = new int[100];  // 初始化数组  for (int i = 0; i < array.length; i++) {  array[i] = i;  }  // 创建一个ForkJoinPool  ForkJoinPool pool = new ForkJoinPool();  // 提交任务并获取结果  ForkJoinTask<Integer> task = new SumTask(array);  Integer sum = pool.invoke(task);  // 输出结果  System.out.println("Sum of array elements: " + sum);  // 关闭ForkJoinPool(虽然不是严格必需的,因为在这个简单例子中程序即将结束,但在生产代码中是个好习惯)  pool.shutdown();  }  
}

运行代码将输出,如下:

Sum of array elements: 4950

数组包含了0到99的整数,它们的和是4950,通过使用ForkJoinTask,能够并行地计算这个和。

核心API

ForkJoinTask 是 Java 并发包 java.util.concurrent 中的一个抽象类,它表示可以被 ForkJoinPool 执行的任务,ForkJoinTask 有两个直接子类:RecursiveActionRecursiveTask,分别表示不返回结果和返回结果的任务,以下是 ForkJoinTask 及其子类中一些重要方法的简要说明:

fork()

该方法用于在 ForkJoinPool 中异步地执行当前任务,如果当前任务已经在执行,则该方法不会有任何效果,调用 fork() 后,任务进入 ForkJoinPool 的工作队列中等待执行,fork() 是一个非阻塞方法,它会立即返回。

join()

该方法用于等待任务的完成,并获取其结果(如果任务有结果的话),如果任务已经完成,join() 会立即返回结果,如果任务尚未完成,join() 会阻塞调用线程,直到任务完成为止,对于 RecursiveActionjoin() 没有返回值;对于 RecursiveTaskjoin() 返回任务计算的结果。

invoke()

该方法用于在当前线程中执行任务,而不是在 ForkJoinPool 中异步执行,invoke() 会等待任务完成,并返回结果(如果任务有结果的话),通常,在不需要并行处理或任务很小不适合分解时使用 invoke()

invokeAll(ForkJoinTask… tasks)

这是ForkJoinTask 的静态方法,该方法用于执行给定的任务数组,并等待所有任务完成,它返回一个包含每个任务结果的数组(如果任务是 RecursiveTask 类型的话),如果任务是 RecursiveAction 类型,则结果数组中的每个元素都是 null,因为 RecursiveAction 不返回结果。

getPool()

返回执行此任务的 ForkJoinPool,如果任务尚未安排或已开始,则返回 null

getRawResult()

对于 RecursiveTask,返回任务的结果,但不等待任务完成。如果任务尚未完成,则可能返回不确定的结果,对于 RecursiveAction,此方法没有定义,因为它不返回结果。

setRawResult(V value)

对于 RecursiveTask,此方法用于设置任务的结果,这通常在任务计算完成后调用,对于 RecursiveAction,此方法没有定义。

isCompletedAbnormally()

如果任务因异常而完成,则返回 true

isCancelled()

如果任务被取消,则返回 true

cancel(boolean mayInterruptIfRunning)

尝试取消此任务的执行,如果任务已经开始执行,则参数 mayInterruptIfRunning 决定是否应该中断执行任务的线程。

ForkJoinTask 的设计主要是为了支持分治算法和并行计算,在实际使用中,通常通过扩展 RecursiveActionRecursiveTask 来实现自己的并行任务,而不是直接使用 ForkJoinTask 类,此外,使用 ForkJoinTask 时需要注意任务的粒度控制,以避免过度分解导致的性能下降。

核心总结

【揭秘】ForkJoinTask全面解析 - 程序员古德

ForkJoinTask是Java中处理并行计算的利器,其优点在于能够轻松地将大任务拆分成小任务,利用多核处理器并行处理,提高执行效率,它的缺点也很明显,比如任务划分和数据同步的复杂性可能导致额外的开销。ForkJoinTask适合处理计算密集型且可分解的任务,但要注意任务粒度的控制,避免划分过细;同时,合理处理线程安全和任务依赖关系,确保数据的正确性和一致性。

关注我,每天学习互联网编程技术 - 程序员古德

相关文章:

【揭秘】ForkJoinTask全面解析

内容摘要 ForkJoinTask的显著优点在于其高效的并行处理能力&#xff0c;它能够将复杂任务拆分成多个子任务&#xff0c;并利用多核处理器同时执行&#xff0c;从而显著提升计算性能&#xff0c;此外&#xff0c;ForkJoinTask还提供了简洁的API和强大的任务管理机制&#xff0c…...

如何利用数据压缩提高高性能存储的效率?

在当前信息爆炸的时代&#xff0c;大数据存储和管理成为了各大企业和组织面临的重要挑战之一。高性能存储系统的效率对于数据处理和应用的性能至关重要。而数据压缩技术的应用可以在一定程度上提高高性能存储的效率。 数据压缩技术的作用 数据压缩是通过对数据进行编码和压缩…...

前端工程化之:webpack1-2(安装与使用)

一、webpack简介 webpack中文网 webpack 是基于模块化的打包(构建)工具&#xff0c;它把一切视为模块它通过一个开发时态的入口模块为起点&#xff0c;分析出所有的依赖关系&#xff0c;然后经过一系列的过程(压缩、合并)&#xff0c;最终生成运行时态的文件。 webpack的特点&a…...

MySQL索引类型及数据结构【笔记】

1 索引类型 返回面试宝典 主键索引&#xff08;PRIMARY&#xff09;:数据列不允许重复&#xff0c;不允许为NULL&#xff0c;一个表只能有一个主键。 唯一索引&#xff08;UNIQUE&#xff09;:数据列不允许重复&#xff0c;允许为NULL&#xff0c;一个表允许多个列创建唯一索引…...

成熟的内外网数据交换方案,如何实现跨网传输?

网络迅速发展&#xff0c;我们可以从网络上查找到各式各样的信息&#xff0c;但是同时网络安全问题也随之严重。近几年&#xff0c;各种有关网络安全的新闻不断被报道&#xff0c;数据泄露给很多企业带来了严重打击&#xff0c;不仅是经济损失&#xff0c;严重者还会对企业的声…...

python11-Python的字符串之repr

有时候&#xff0c;我们需要将字符串与数值进行拼接&#xff0c;而 Python 不允许直接拼接数值和字符串&#xff0c;程序必须先将数值转换成字符串。 为了将数值转换成字符串&#xff0c;可以使用str0或repr()函数&#xff0c;例如如下代码。 # !/usr/bin/env python# -*- co…...

python小项目:口令保管箱

代码&#xff1a; #! python3 # python 编程-----口令保管箱passwords{emails: F7minlBDDuvMJuxESSKHFhTxFtjVB6,blog:VmALvQyKAxiVH5G8v01if1MLZF3sdt,luggage:12345,} import sys,pyperclip if len(sys.argv)<2:print(usage:python python3文件[accout]-copy accout pass…...

微认证 openEuler社区开源贡献实践

文章目录 1. 开源与开源社区2. openEuler 社区概述3.参与openEuler社区贡献4.openEuler软件包开发Linux软件管理——源码编译 1. 开源与开源社区 Richard Matthew Stallman&#xff0c;1983年9月推出GNU项目&#xff0c;并发起自由软件运动(free software movement或free/open…...

紫光展锐M6780丨超分辨率技术——画质重构还原经典

上一期&#xff0c;我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影&#xff0c;光有高饱和度的色彩是不够的&#xff0c;如何能够提高视频影像的分辨率&#xff0c;使画质更加清晰&#xff0c;实现老片新看&#xff1f; 本期带大家揭晓紫光展锐首颗AI8K超高清智…...

《Python 简易速速上手小册》第6章:Python 文件和数据持久化(基于最新版 Python3.12 编写)

注意&#xff1a;本《Python 简易速速上手小册》 核心目的在于让零基础新手「快速构建 Python 知识体系」 文章目录 <mark >注意&#xff1a;本《Python 简易速速上手小册》<mark >核心目的在于让零基础新手「快速构建 Python 知识体系」 6.1 文件读写操作6.1.1 打…...

华为机考入门python3--(4)牛客4-字符串分隔

分类&#xff1a;字符串 知识点&#xff1a; 复制符号* 复制3个0 0*3 000 字符串截取 截取第i位到j-1位 str[i:j] 题目来自【牛客】 input_str input().strip()# 先补齐 if len(input_str) % 8 ! 0: input_str 0 * (8 - len(input_str) % 8) # 每8个分 out…...

Unity MonoBehaviour 生成dll

dllllllllllllll&#x1f953; &#x1f959;vs创建类库项目&#x1f9c0;添加UnityEngine、UnityEditor引用&#x1f355;添加MonoBehaviour类&#x1f9aa;设置dll生成路径&#x1f37f;生成dll&#x1f354;使用dll中的Mono类 &#x1f959;vs创建类库项目 &#x1f9c0;添加…...

基于Python flask MySQL 猫眼电影可视化系统设计与实现

1 绪论 1.1 设计背景及目的 猫眼电影作为国内知名的电影信息网站&#xff0c;拥有海量的电影信息、票房数据和用户评价数据。这些数据对于电影市场的研究和分析具有重要意义。然而&#xff0c;由于数据的复杂性和数据来源的多样性&#xff0c;如何有效地采集、存储和展示这些数…...

【新课上架】安装部署系列Ⅲ—Oracle 19c Data Guard部署之两节点RAC部署实战

01 课程介绍 Oracle Real Application Clusters (RAC) 是一种跨多个节点分布数据库的企业级解决方案。它使组织能够通过实现容错和负载平衡来提高可用性和可扩展性&#xff0c;同时提高性能。本课程基于当前主流版本Oracle 19cOEL7.9解析如何搭建2节点RAC对1节点单机的DATA GU…...

gdb调试std::list和std::vector等容器的方法

GDB中print方法并不能直接打印STL容器中保存的变量&#xff0c;其实只要http://www.yolinux.com/TUTORIALS/src/dbinit_stl_views-1.03.txt这个文件保存为~/.gdbinit 就可以使用它提供的方法方便调试容器 指定启动文件&#xff1a;~/.gdbinit&#xff0c;下面的方法任选其一。…...

python stomp 转发activemq topic消息

import pysimplestomp 连接到ActiveMQ的Topic&#xff1a; # 连接ActiveMQ服务器 server "tcp://localhost:61613" topic "/topic/your_topic"# 连接到ActiveMQ的Topic destination f"destination://{topic}" connection pysimplestomp.con…...

Spring Boot使用AOP

一、为什么需要面向切面编程&#xff1f; 面向对象编程&#xff08;OOP&#xff09;的好处是显而易见的&#xff0c;缺点也同样明显。当需要为多个不具有继承关系的对象添加一个公共的方法的时候&#xff0c;例如日志记录、性能监控等&#xff0c;如果采用面向对象编程的方法&…...

C语言通过IXMLHttpRequest以get或post方式发送http请求获取服务器文本或xml数据

做过网页设计的人应该都知道ajax。 Ajax即Asynchronous Javascript And XML&#xff08;异步的JavaScript和XML&#xff09;。使用Ajax的最大优点&#xff0c;就是能在不更新整个页面的前提下维护数据。这使得Web应用程序更为迅捷地回应用户动作&#xff0c;并避免了在网络上发…...

QtRVSim(二)一个 RISC-V 程序的解码流程

继上一篇文章简单代码分析后&#xff0c;本文主要调研如何实现对指令的解析运行。 调试配置 使用 gdb 工具跟踪调试运行。 c_cpp_properties.json 项目配置&#xff1a; {"name": "QtRvSim","includePath": ["${workspaceFolder}/**&quo…...

x-cmd pkg | httpx - 为 Python 设计的下一代 HTTP 客户端库

目录 简介首次用户功能特点进一步探索 简介 HTTPX 是一个为 Python 设计的下一代 HTTP 客户端库&#xff0c;由 Tom Christie 创建。它提供了同步和异步的 API&#xff0c;并支持 HTTP/1.1 和 HTTP/2 协议。与 Requests 库类似&#xff0c;但增加了对异步请求的支持和 HTTP/2 …...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向

在人工智能技术呈指数级发展的当下&#xff0c;大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性&#xff0c;吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型&#xff0c;成为释放其巨大潜力的关键所在&…...