当前位置: 首页 > news >正文

【揭秘】ForkJoinTask全面解析

【揭秘】ForkJoinTask全面解析 - 程序员古德

内容摘要

ForkJoinTask的显著优点在于其高效的并行处理能力,它能够将复杂任务拆分成多个子任务,并利用多核处理器同时执行,从而显著提升计算性能,此外,ForkJoinTask还提供了简洁的API和强大的任务管理机制,使得开发者能够更轻松地编写并行化代码,高效地利用系统资源。

核心概念

ForkJoinTask在Java中主要用来解决可以并行处理的任务的分解与合并问题,它是行计算框架ForkJoinFramework的核心组件,提供了一种高效的方式来利用多核处理器,它解决了以下几个方面的问题:

  1. 任务分解:很多计算密集型或数据处理密集型的问题可以分解为更小的子任务,例如,对一个大型数组进行排序或处理大量数据记录时,通常可以将数组或数据记录集分割成多个较小的部分,然后并行处理这些部分,ForkJoinTask提供了将任务递归分解成更小任务的方式,直到任务足够小以至于顺序执行比并行执行更高效。
  2. 任务并行化:通过ForkJoinPoolForkJoinTask能够将分解后的子任务分配给不同的线程执行,从而实现并行处理,这充分利用了多核处理器的计算能力,提高了程序的执行效率。
  3. 任务结果合并:在子任务并行执行完成后,需要将它们的结果合并以得到最终的结果,ForkJoinTask提供了合并子任务结果的机制,确保所有子任务的结果都能正确地组合在一起。
  4. 工作窃取ForkJoinPool还实现了工作窃取算法,这意味着当一个线程完成了它自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,从而减少了线程的空闲时间,提高了资源利用率。

因此,ForkJoinTask是用来处理可并行化任务的强大工具,它通过任务分解、并行化、结果合并和工作窃取等机制,有效地提高了程序的执行效率和资源利用率。

#代码案例

下面是一个使用了ForkJoinTask的简单示例,演示了如何分解一个任务,使其并行处理一个整数数组,并计算数组中所有元素的和。

先创建一个SumTask类,它继承自RecursiveTask<Integer>,用于计算数组元素的和,如果数组的大小超过一个阈值(例如10),则任务将递归地分解为两个子任务,分别处理数组的前半部分和后半部分,否则,任务将顺序计算数组的和,如下代码:

import java.util.concurrent.RecursiveTask;  public class SumTask extends RecursiveTask<Integer> {  private static final int THRESHOLD = 10; // 阈值,当数组大小小于这个值时,不再进行任务分解  private final int[] array;  private final int start;  private final int end;  public SumTask(int[] array) {  this(array, 0, array.length);  }  private SumTask(int[] array, int start, int end) {  this.array = array;  this.start = start;  this.end = end;  }  @Override  protected Integer compute() {  // 如果任务足够小,直接计算结果  if (end - start <= THRESHOLD) {  int sum = 0;  for (int i = start; i < end; i++) {  sum += array[i];  }  return sum;  } else {  // 否则,将任务分解为两个子任务  int middle = (start + end) / 2;  SumTask leftTask = new SumTask(array, start, middle);  SumTask rightTask = new SumTask(array, middle, end);  // 异步执行子任务并等待结果  return leftTask.fork().join() + rightTask.fork().join();  }  }  
}

如下client代码(main函数),如下:

import java.util.concurrent.ForkJoinPool;  
import java.util.concurrent.ForkJoinTask;  public class ForkJoinTaskExample {  public static void main(String[] args) {  int[] array = new int[100];  // 初始化数组  for (int i = 0; i < array.length; i++) {  array[i] = i;  }  // 创建一个ForkJoinPool  ForkJoinPool pool = new ForkJoinPool();  // 提交任务并获取结果  ForkJoinTask<Integer> task = new SumTask(array);  Integer sum = pool.invoke(task);  // 输出结果  System.out.println("Sum of array elements: " + sum);  // 关闭ForkJoinPool(虽然不是严格必需的,因为在这个简单例子中程序即将结束,但在生产代码中是个好习惯)  pool.shutdown();  }  
}

运行代码将输出,如下:

Sum of array elements: 4950

数组包含了0到99的整数,它们的和是4950,通过使用ForkJoinTask,能够并行地计算这个和。

核心API

ForkJoinTask 是 Java 并发包 java.util.concurrent 中的一个抽象类,它表示可以被 ForkJoinPool 执行的任务,ForkJoinTask 有两个直接子类:RecursiveActionRecursiveTask,分别表示不返回结果和返回结果的任务,以下是 ForkJoinTask 及其子类中一些重要方法的简要说明:

fork()

该方法用于在 ForkJoinPool 中异步地执行当前任务,如果当前任务已经在执行,则该方法不会有任何效果,调用 fork() 后,任务进入 ForkJoinPool 的工作队列中等待执行,fork() 是一个非阻塞方法,它会立即返回。

join()

该方法用于等待任务的完成,并获取其结果(如果任务有结果的话),如果任务已经完成,join() 会立即返回结果,如果任务尚未完成,join() 会阻塞调用线程,直到任务完成为止,对于 RecursiveActionjoin() 没有返回值;对于 RecursiveTaskjoin() 返回任务计算的结果。

invoke()

该方法用于在当前线程中执行任务,而不是在 ForkJoinPool 中异步执行,invoke() 会等待任务完成,并返回结果(如果任务有结果的话),通常,在不需要并行处理或任务很小不适合分解时使用 invoke()

invokeAll(ForkJoinTask… tasks)

这是ForkJoinTask 的静态方法,该方法用于执行给定的任务数组,并等待所有任务完成,它返回一个包含每个任务结果的数组(如果任务是 RecursiveTask 类型的话),如果任务是 RecursiveAction 类型,则结果数组中的每个元素都是 null,因为 RecursiveAction 不返回结果。

getPool()

返回执行此任务的 ForkJoinPool,如果任务尚未安排或已开始,则返回 null

getRawResult()

对于 RecursiveTask,返回任务的结果,但不等待任务完成。如果任务尚未完成,则可能返回不确定的结果,对于 RecursiveAction,此方法没有定义,因为它不返回结果。

setRawResult(V value)

对于 RecursiveTask,此方法用于设置任务的结果,这通常在任务计算完成后调用,对于 RecursiveAction,此方法没有定义。

isCompletedAbnormally()

如果任务因异常而完成,则返回 true

isCancelled()

如果任务被取消,则返回 true

cancel(boolean mayInterruptIfRunning)

尝试取消此任务的执行,如果任务已经开始执行,则参数 mayInterruptIfRunning 决定是否应该中断执行任务的线程。

ForkJoinTask 的设计主要是为了支持分治算法和并行计算,在实际使用中,通常通过扩展 RecursiveActionRecursiveTask 来实现自己的并行任务,而不是直接使用 ForkJoinTask 类,此外,使用 ForkJoinTask 时需要注意任务的粒度控制,以避免过度分解导致的性能下降。

核心总结

【揭秘】ForkJoinTask全面解析 - 程序员古德

ForkJoinTask是Java中处理并行计算的利器,其优点在于能够轻松地将大任务拆分成小任务,利用多核处理器并行处理,提高执行效率,它的缺点也很明显,比如任务划分和数据同步的复杂性可能导致额外的开销。ForkJoinTask适合处理计算密集型且可分解的任务,但要注意任务粒度的控制,避免划分过细;同时,合理处理线程安全和任务依赖关系,确保数据的正确性和一致性。

关注我,每天学习互联网编程技术 - 程序员古德

相关文章:

【揭秘】ForkJoinTask全面解析

内容摘要 ForkJoinTask的显著优点在于其高效的并行处理能力&#xff0c;它能够将复杂任务拆分成多个子任务&#xff0c;并利用多核处理器同时执行&#xff0c;从而显著提升计算性能&#xff0c;此外&#xff0c;ForkJoinTask还提供了简洁的API和强大的任务管理机制&#xff0c…...

如何利用数据压缩提高高性能存储的效率?

在当前信息爆炸的时代&#xff0c;大数据存储和管理成为了各大企业和组织面临的重要挑战之一。高性能存储系统的效率对于数据处理和应用的性能至关重要。而数据压缩技术的应用可以在一定程度上提高高性能存储的效率。 数据压缩技术的作用 数据压缩是通过对数据进行编码和压缩…...

前端工程化之:webpack1-2(安装与使用)

一、webpack简介 webpack中文网 webpack 是基于模块化的打包(构建)工具&#xff0c;它把一切视为模块它通过一个开发时态的入口模块为起点&#xff0c;分析出所有的依赖关系&#xff0c;然后经过一系列的过程(压缩、合并)&#xff0c;最终生成运行时态的文件。 webpack的特点&a…...

MySQL索引类型及数据结构【笔记】

1 索引类型 返回面试宝典 主键索引&#xff08;PRIMARY&#xff09;:数据列不允许重复&#xff0c;不允许为NULL&#xff0c;一个表只能有一个主键。 唯一索引&#xff08;UNIQUE&#xff09;:数据列不允许重复&#xff0c;允许为NULL&#xff0c;一个表允许多个列创建唯一索引…...

成熟的内外网数据交换方案,如何实现跨网传输?

网络迅速发展&#xff0c;我们可以从网络上查找到各式各样的信息&#xff0c;但是同时网络安全问题也随之严重。近几年&#xff0c;各种有关网络安全的新闻不断被报道&#xff0c;数据泄露给很多企业带来了严重打击&#xff0c;不仅是经济损失&#xff0c;严重者还会对企业的声…...

python11-Python的字符串之repr

有时候&#xff0c;我们需要将字符串与数值进行拼接&#xff0c;而 Python 不允许直接拼接数值和字符串&#xff0c;程序必须先将数值转换成字符串。 为了将数值转换成字符串&#xff0c;可以使用str0或repr()函数&#xff0c;例如如下代码。 # !/usr/bin/env python# -*- co…...

python小项目:口令保管箱

代码&#xff1a; #! python3 # python 编程-----口令保管箱passwords{emails: F7minlBDDuvMJuxESSKHFhTxFtjVB6,blog:VmALvQyKAxiVH5G8v01if1MLZF3sdt,luggage:12345,} import sys,pyperclip if len(sys.argv)<2:print(usage:python python3文件[accout]-copy accout pass…...

微认证 openEuler社区开源贡献实践

文章目录 1. 开源与开源社区2. openEuler 社区概述3.参与openEuler社区贡献4.openEuler软件包开发Linux软件管理——源码编译 1. 开源与开源社区 Richard Matthew Stallman&#xff0c;1983年9月推出GNU项目&#xff0c;并发起自由软件运动(free software movement或free/open…...

紫光展锐M6780丨超分辨率技术——画质重构还原经典

上一期&#xff0c;我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影&#xff0c;光有高饱和度的色彩是不够的&#xff0c;如何能够提高视频影像的分辨率&#xff0c;使画质更加清晰&#xff0c;实现老片新看&#xff1f; 本期带大家揭晓紫光展锐首颗AI8K超高清智…...

《Python 简易速速上手小册》第6章:Python 文件和数据持久化(基于最新版 Python3.12 编写)

注意&#xff1a;本《Python 简易速速上手小册》 核心目的在于让零基础新手「快速构建 Python 知识体系」 文章目录 <mark >注意&#xff1a;本《Python 简易速速上手小册》<mark >核心目的在于让零基础新手「快速构建 Python 知识体系」 6.1 文件读写操作6.1.1 打…...

华为机考入门python3--(4)牛客4-字符串分隔

分类&#xff1a;字符串 知识点&#xff1a; 复制符号* 复制3个0 0*3 000 字符串截取 截取第i位到j-1位 str[i:j] 题目来自【牛客】 input_str input().strip()# 先补齐 if len(input_str) % 8 ! 0: input_str 0 * (8 - len(input_str) % 8) # 每8个分 out…...

Unity MonoBehaviour 生成dll

dllllllllllllll&#x1f953; &#x1f959;vs创建类库项目&#x1f9c0;添加UnityEngine、UnityEditor引用&#x1f355;添加MonoBehaviour类&#x1f9aa;设置dll生成路径&#x1f37f;生成dll&#x1f354;使用dll中的Mono类 &#x1f959;vs创建类库项目 &#x1f9c0;添加…...

基于Python flask MySQL 猫眼电影可视化系统设计与实现

1 绪论 1.1 设计背景及目的 猫眼电影作为国内知名的电影信息网站&#xff0c;拥有海量的电影信息、票房数据和用户评价数据。这些数据对于电影市场的研究和分析具有重要意义。然而&#xff0c;由于数据的复杂性和数据来源的多样性&#xff0c;如何有效地采集、存储和展示这些数…...

【新课上架】安装部署系列Ⅲ—Oracle 19c Data Guard部署之两节点RAC部署实战

01 课程介绍 Oracle Real Application Clusters (RAC) 是一种跨多个节点分布数据库的企业级解决方案。它使组织能够通过实现容错和负载平衡来提高可用性和可扩展性&#xff0c;同时提高性能。本课程基于当前主流版本Oracle 19cOEL7.9解析如何搭建2节点RAC对1节点单机的DATA GU…...

gdb调试std::list和std::vector等容器的方法

GDB中print方法并不能直接打印STL容器中保存的变量&#xff0c;其实只要http://www.yolinux.com/TUTORIALS/src/dbinit_stl_views-1.03.txt这个文件保存为~/.gdbinit 就可以使用它提供的方法方便调试容器 指定启动文件&#xff1a;~/.gdbinit&#xff0c;下面的方法任选其一。…...

python stomp 转发activemq topic消息

import pysimplestomp 连接到ActiveMQ的Topic&#xff1a; # 连接ActiveMQ服务器 server "tcp://localhost:61613" topic "/topic/your_topic"# 连接到ActiveMQ的Topic destination f"destination://{topic}" connection pysimplestomp.con…...

Spring Boot使用AOP

一、为什么需要面向切面编程&#xff1f; 面向对象编程&#xff08;OOP&#xff09;的好处是显而易见的&#xff0c;缺点也同样明显。当需要为多个不具有继承关系的对象添加一个公共的方法的时候&#xff0c;例如日志记录、性能监控等&#xff0c;如果采用面向对象编程的方法&…...

C语言通过IXMLHttpRequest以get或post方式发送http请求获取服务器文本或xml数据

做过网页设计的人应该都知道ajax。 Ajax即Asynchronous Javascript And XML&#xff08;异步的JavaScript和XML&#xff09;。使用Ajax的最大优点&#xff0c;就是能在不更新整个页面的前提下维护数据。这使得Web应用程序更为迅捷地回应用户动作&#xff0c;并避免了在网络上发…...

QtRVSim(二)一个 RISC-V 程序的解码流程

继上一篇文章简单代码分析后&#xff0c;本文主要调研如何实现对指令的解析运行。 调试配置 使用 gdb 工具跟踪调试运行。 c_cpp_properties.json 项目配置&#xff1a; {"name": "QtRvSim","includePath": ["${workspaceFolder}/**&quo…...

x-cmd pkg | httpx - 为 Python 设计的下一代 HTTP 客户端库

目录 简介首次用户功能特点进一步探索 简介 HTTPX 是一个为 Python 设计的下一代 HTTP 客户端库&#xff0c;由 Tom Christie 创建。它提供了同步和异步的 API&#xff0c;并支持 HTTP/1.1 和 HTTP/2 协议。与 Requests 库类似&#xff0c;但增加了对异步请求的支持和 HTTP/2 …...

代码随想录算法训练营第四十二天(动态规划篇)|62. 不同路径

62. 不同路径 题目链接&#xff1a;62. 不同路径 - 力扣&#xff08;LeetCode&#xff09; 思路 dp[i][j]: 从0到位置[i, j]共有dp[i][j]条路径。 dp[i][j] dp[i-1][j] dp[i][j-1] 到位置[i,j]&#xff0c;可以从它的上面或者左边来&#xff0c;所以路径和为这两个方向的路…...

YOLO 全面回顾:从最初的YOLOv1到最新的YOLOv8、YOLO-NAS,以及整合了 Transformers 的 YOLO

YOLO 全面回顾 综述评估指标YOLO v1YOLO v2YOLO v3YOLO v4YOLOv5 与 Scaled-YOLOv4 YOLORYOLOXYOLOv6YOLOv7DAMO-YOLOYOLOv8PP-YOLO, PP-YOLOv2, and PP-YOLOEYOLO-NASYOLO with Transformers 综述 论文&#xff1a;https://arxiv.org/pdf/2304.00501.pdf 代码&#xff1a;gi…...

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心,Kotlin(2)

Android双指缩放ScaleGestureDetector检测放大因子大图移动到双指中心点ImageView区域中心&#xff0c;Kotlin&#xff08;2&#xff09; 在 Android ScaleGestureDetector检测双指缩放Bitmap基于Matrix动画移动到双指捏合中心点ImageView区域中心&#xff0c;Kotlin-CSDN博客 …...

同为科技(TOWE)自动控制循环定时插座

随着科技的发展&#xff0c;智能化家居已成为我们生活的重要组成部分。作为国内领先的智能家居品牌&#xff0c;同为科技&#xff08;TOWE&#xff09;推出的自动控制循环定时插座&#xff0c;无疑将科技与生活完美地结合在一起。 1.外观设计 同为科技&#xff08;TOWE&#x…...

游戏设计模式

单列模式 概念 单例模式是一种创建型设计模式&#xff0c;可以保证一个类只有一个实例&#xff0c;并提供一个访问该实例的全局节点。 优点 可以派生&#xff1a;在单例类的实例构造函数中可以设置以允许子类派生。受控访问&#xff1a;因为单例类封装他的唯一实例&#xf…...

CUBEMX与FreeRTOS在Arm Compiler 6下的配置方法

在嵌入式开发中&#xff0c;STM32是一种广泛使用的微控制器。为了提高开发效率&#xff0c;我们通常会利用ST公司提供的STM32CubeMX工具来配置硬件&#xff0c;并结合FreeRTOS这一实时操作系统来进行多任务处理。本文将深入探讨如何在这一框架下&#xff0c;使用Arm Compiler 6…...

Android Studio 提示Use app:drawableStartCompat instead of android:drawableStart

每次提交代码时&#xff0c;AS这个老妈子总爱唠叨一堆warning&#xff0c;这些Warning都在讲什么&#xff1f; 1.Use app:drawableStartCompat instead of android:drawableStart 在Android开发中&#xff0c;android:drawableStart和app:drawableStartCompat是两个用于设置…...

C# wpf 实现任意控件(包括窗口)更多调整大小功能

WPF拖动改变大小系列 第一节 Grid内控件拖动调整大小 第二节 Canvas内控件拖动调整大小 第三节 窗口拖动调整大小 第四节 附加属性实现拖动调整大小 第五章 拓展更多调整大小功能&#xff08;本章&#xff09; 文章目录 WPF拖动改变大小系列前言一、添加的功能1、任意控件Drag…...

Vue+OpenLayers7入门到实战:快速搭建Vue+OpenLayers7地图脚手架项目。从零开始构建Vue项目并整合OpenLayers7.5.2

返回《Vue+OpenLayers7》专栏目录:Vue+OpenLayers7 前言 本章针对Vue初学者,对Vue不熟悉,甚至还不会Vue的入门学生读者。 本章会详细讲解从NodeJS环境到npm环境的各个步骤,再到使用vue-cli脚手架快速生成项目,以及添加OpenLayers7地图库依赖,编写简单的xyz高德地图显示…...

mysql-线上常用运维sql

1.表备份 INSERT INTO table1 SELECT * FROM table2; 2.用一个表中的字段更新另一张表中的字段 UPDATE table2 JOIN table1 ON table2.id table1.id SET table2.column2 table1.column1; 3.在MySQL中&#xff0c;查询一个表的列字段值是否包含另一个表的字段&#xff0c;…...