当前位置: 首页 > news >正文

【揭秘】ForkJoinTask全面解析

【揭秘】ForkJoinTask全面解析 - 程序员古德

内容摘要

ForkJoinTask的显著优点在于其高效的并行处理能力,它能够将复杂任务拆分成多个子任务,并利用多核处理器同时执行,从而显著提升计算性能,此外,ForkJoinTask还提供了简洁的API和强大的任务管理机制,使得开发者能够更轻松地编写并行化代码,高效地利用系统资源。

核心概念

ForkJoinTask在Java中主要用来解决可以并行处理的任务的分解与合并问题,它是行计算框架ForkJoinFramework的核心组件,提供了一种高效的方式来利用多核处理器,它解决了以下几个方面的问题:

  1. 任务分解:很多计算密集型或数据处理密集型的问题可以分解为更小的子任务,例如,对一个大型数组进行排序或处理大量数据记录时,通常可以将数组或数据记录集分割成多个较小的部分,然后并行处理这些部分,ForkJoinTask提供了将任务递归分解成更小任务的方式,直到任务足够小以至于顺序执行比并行执行更高效。
  2. 任务并行化:通过ForkJoinPoolForkJoinTask能够将分解后的子任务分配给不同的线程执行,从而实现并行处理,这充分利用了多核处理器的计算能力,提高了程序的执行效率。
  3. 任务结果合并:在子任务并行执行完成后,需要将它们的结果合并以得到最终的结果,ForkJoinTask提供了合并子任务结果的机制,确保所有子任务的结果都能正确地组合在一起。
  4. 工作窃取ForkJoinPool还实现了工作窃取算法,这意味着当一个线程完成了它自己的任务后,它可以从其他线程的任务队列中“窃取”任务来执行,从而减少了线程的空闲时间,提高了资源利用率。

因此,ForkJoinTask是用来处理可并行化任务的强大工具,它通过任务分解、并行化、结果合并和工作窃取等机制,有效地提高了程序的执行效率和资源利用率。

#代码案例

下面是一个使用了ForkJoinTask的简单示例,演示了如何分解一个任务,使其并行处理一个整数数组,并计算数组中所有元素的和。

先创建一个SumTask类,它继承自RecursiveTask<Integer>,用于计算数组元素的和,如果数组的大小超过一个阈值(例如10),则任务将递归地分解为两个子任务,分别处理数组的前半部分和后半部分,否则,任务将顺序计算数组的和,如下代码:

import java.util.concurrent.RecursiveTask;  public class SumTask extends RecursiveTask<Integer> {  private static final int THRESHOLD = 10; // 阈值,当数组大小小于这个值时,不再进行任务分解  private final int[] array;  private final int start;  private final int end;  public SumTask(int[] array) {  this(array, 0, array.length);  }  private SumTask(int[] array, int start, int end) {  this.array = array;  this.start = start;  this.end = end;  }  @Override  protected Integer compute() {  // 如果任务足够小,直接计算结果  if (end - start <= THRESHOLD) {  int sum = 0;  for (int i = start; i < end; i++) {  sum += array[i];  }  return sum;  } else {  // 否则,将任务分解为两个子任务  int middle = (start + end) / 2;  SumTask leftTask = new SumTask(array, start, middle);  SumTask rightTask = new SumTask(array, middle, end);  // 异步执行子任务并等待结果  return leftTask.fork().join() + rightTask.fork().join();  }  }  
}

如下client代码(main函数),如下:

import java.util.concurrent.ForkJoinPool;  
import java.util.concurrent.ForkJoinTask;  public class ForkJoinTaskExample {  public static void main(String[] args) {  int[] array = new int[100];  // 初始化数组  for (int i = 0; i < array.length; i++) {  array[i] = i;  }  // 创建一个ForkJoinPool  ForkJoinPool pool = new ForkJoinPool();  // 提交任务并获取结果  ForkJoinTask<Integer> task = new SumTask(array);  Integer sum = pool.invoke(task);  // 输出结果  System.out.println("Sum of array elements: " + sum);  // 关闭ForkJoinPool(虽然不是严格必需的,因为在这个简单例子中程序即将结束,但在生产代码中是个好习惯)  pool.shutdown();  }  
}

运行代码将输出,如下:

Sum of array elements: 4950

数组包含了0到99的整数,它们的和是4950,通过使用ForkJoinTask,能够并行地计算这个和。

核心API

ForkJoinTask 是 Java 并发包 java.util.concurrent 中的一个抽象类,它表示可以被 ForkJoinPool 执行的任务,ForkJoinTask 有两个直接子类:RecursiveActionRecursiveTask,分别表示不返回结果和返回结果的任务,以下是 ForkJoinTask 及其子类中一些重要方法的简要说明:

fork()

该方法用于在 ForkJoinPool 中异步地执行当前任务,如果当前任务已经在执行,则该方法不会有任何效果,调用 fork() 后,任务进入 ForkJoinPool 的工作队列中等待执行,fork() 是一个非阻塞方法,它会立即返回。

join()

该方法用于等待任务的完成,并获取其结果(如果任务有结果的话),如果任务已经完成,join() 会立即返回结果,如果任务尚未完成,join() 会阻塞调用线程,直到任务完成为止,对于 RecursiveActionjoin() 没有返回值;对于 RecursiveTaskjoin() 返回任务计算的结果。

invoke()

该方法用于在当前线程中执行任务,而不是在 ForkJoinPool 中异步执行,invoke() 会等待任务完成,并返回结果(如果任务有结果的话),通常,在不需要并行处理或任务很小不适合分解时使用 invoke()

invokeAll(ForkJoinTask… tasks)

这是ForkJoinTask 的静态方法,该方法用于执行给定的任务数组,并等待所有任务完成,它返回一个包含每个任务结果的数组(如果任务是 RecursiveTask 类型的话),如果任务是 RecursiveAction 类型,则结果数组中的每个元素都是 null,因为 RecursiveAction 不返回结果。

getPool()

返回执行此任务的 ForkJoinPool,如果任务尚未安排或已开始,则返回 null

getRawResult()

对于 RecursiveTask,返回任务的结果,但不等待任务完成。如果任务尚未完成,则可能返回不确定的结果,对于 RecursiveAction,此方法没有定义,因为它不返回结果。

setRawResult(V value)

对于 RecursiveTask,此方法用于设置任务的结果,这通常在任务计算完成后调用,对于 RecursiveAction,此方法没有定义。

isCompletedAbnormally()

如果任务因异常而完成,则返回 true

isCancelled()

如果任务被取消,则返回 true

cancel(boolean mayInterruptIfRunning)

尝试取消此任务的执行,如果任务已经开始执行,则参数 mayInterruptIfRunning 决定是否应该中断执行任务的线程。

ForkJoinTask 的设计主要是为了支持分治算法和并行计算,在实际使用中,通常通过扩展 RecursiveActionRecursiveTask 来实现自己的并行任务,而不是直接使用 ForkJoinTask 类,此外,使用 ForkJoinTask 时需要注意任务的粒度控制,以避免过度分解导致的性能下降。

核心总结

【揭秘】ForkJoinTask全面解析 - 程序员古德

ForkJoinTask是Java中处理并行计算的利器,其优点在于能够轻松地将大任务拆分成小任务,利用多核处理器并行处理,提高执行效率,它的缺点也很明显,比如任务划分和数据同步的复杂性可能导致额外的开销。ForkJoinTask适合处理计算密集型且可分解的任务,但要注意任务粒度的控制,避免划分过细;同时,合理处理线程安全和任务依赖关系,确保数据的正确性和一致性。

关注我,每天学习互联网编程技术 - 程序员古德

相关文章:

【揭秘】ForkJoinTask全面解析

内容摘要 ForkJoinTask的显著优点在于其高效的并行处理能力&#xff0c;它能够将复杂任务拆分成多个子任务&#xff0c;并利用多核处理器同时执行&#xff0c;从而显著提升计算性能&#xff0c;此外&#xff0c;ForkJoinTask还提供了简洁的API和强大的任务管理机制&#xff0c…...

如何利用数据压缩提高高性能存储的效率?

在当前信息爆炸的时代&#xff0c;大数据存储和管理成为了各大企业和组织面临的重要挑战之一。高性能存储系统的效率对于数据处理和应用的性能至关重要。而数据压缩技术的应用可以在一定程度上提高高性能存储的效率。 数据压缩技术的作用 数据压缩是通过对数据进行编码和压缩…...

前端工程化之:webpack1-2(安装与使用)

一、webpack简介 webpack中文网 webpack 是基于模块化的打包(构建)工具&#xff0c;它把一切视为模块它通过一个开发时态的入口模块为起点&#xff0c;分析出所有的依赖关系&#xff0c;然后经过一系列的过程(压缩、合并)&#xff0c;最终生成运行时态的文件。 webpack的特点&a…...

MySQL索引类型及数据结构【笔记】

1 索引类型 返回面试宝典 主键索引&#xff08;PRIMARY&#xff09;:数据列不允许重复&#xff0c;不允许为NULL&#xff0c;一个表只能有一个主键。 唯一索引&#xff08;UNIQUE&#xff09;:数据列不允许重复&#xff0c;允许为NULL&#xff0c;一个表允许多个列创建唯一索引…...

成熟的内外网数据交换方案,如何实现跨网传输?

网络迅速发展&#xff0c;我们可以从网络上查找到各式各样的信息&#xff0c;但是同时网络安全问题也随之严重。近几年&#xff0c;各种有关网络安全的新闻不断被报道&#xff0c;数据泄露给很多企业带来了严重打击&#xff0c;不仅是经济损失&#xff0c;严重者还会对企业的声…...

python11-Python的字符串之repr

有时候&#xff0c;我们需要将字符串与数值进行拼接&#xff0c;而 Python 不允许直接拼接数值和字符串&#xff0c;程序必须先将数值转换成字符串。 为了将数值转换成字符串&#xff0c;可以使用str0或repr()函数&#xff0c;例如如下代码。 # !/usr/bin/env python# -*- co…...

python小项目:口令保管箱

代码&#xff1a; #! python3 # python 编程-----口令保管箱passwords{emails: F7minlBDDuvMJuxESSKHFhTxFtjVB6,blog:VmALvQyKAxiVH5G8v01if1MLZF3sdt,luggage:12345,} import sys,pyperclip if len(sys.argv)<2:print(usage:python python3文件[accout]-copy accout pass…...

微认证 openEuler社区开源贡献实践

文章目录 1. 开源与开源社区2. openEuler 社区概述3.参与openEuler社区贡献4.openEuler软件包开发Linux软件管理——源码编译 1. 开源与开源社区 Richard Matthew Stallman&#xff0c;1983年9月推出GNU项目&#xff0c;并发起自由软件运动(free software movement或free/open…...

紫光展锐M6780丨超分辨率技术——画质重构还原经典

上一期&#xff0c;我们揭秘了让画质更加炫彩的AI-PQ技术。面对分辨率较低的老电影&#xff0c;光有高饱和度的色彩是不够的&#xff0c;如何能够提高视频影像的分辨率&#xff0c;使画质更加清晰&#xff0c;实现老片新看&#xff1f; 本期带大家揭晓紫光展锐首颗AI8K超高清智…...

《Python 简易速速上手小册》第6章:Python 文件和数据持久化(基于最新版 Python3.12 编写)

注意&#xff1a;本《Python 简易速速上手小册》 核心目的在于让零基础新手「快速构建 Python 知识体系」 文章目录 <mark >注意&#xff1a;本《Python 简易速速上手小册》<mark >核心目的在于让零基础新手「快速构建 Python 知识体系」 6.1 文件读写操作6.1.1 打…...

华为机考入门python3--(4)牛客4-字符串分隔

分类&#xff1a;字符串 知识点&#xff1a; 复制符号* 复制3个0 0*3 000 字符串截取 截取第i位到j-1位 str[i:j] 题目来自【牛客】 input_str input().strip()# 先补齐 if len(input_str) % 8 ! 0: input_str 0 * (8 - len(input_str) % 8) # 每8个分 out…...

Unity MonoBehaviour 生成dll

dllllllllllllll&#x1f953; &#x1f959;vs创建类库项目&#x1f9c0;添加UnityEngine、UnityEditor引用&#x1f355;添加MonoBehaviour类&#x1f9aa;设置dll生成路径&#x1f37f;生成dll&#x1f354;使用dll中的Mono类 &#x1f959;vs创建类库项目 &#x1f9c0;添加…...

基于Python flask MySQL 猫眼电影可视化系统设计与实现

1 绪论 1.1 设计背景及目的 猫眼电影作为国内知名的电影信息网站&#xff0c;拥有海量的电影信息、票房数据和用户评价数据。这些数据对于电影市场的研究和分析具有重要意义。然而&#xff0c;由于数据的复杂性和数据来源的多样性&#xff0c;如何有效地采集、存储和展示这些数…...

【新课上架】安装部署系列Ⅲ—Oracle 19c Data Guard部署之两节点RAC部署实战

01 课程介绍 Oracle Real Application Clusters (RAC) 是一种跨多个节点分布数据库的企业级解决方案。它使组织能够通过实现容错和负载平衡来提高可用性和可扩展性&#xff0c;同时提高性能。本课程基于当前主流版本Oracle 19cOEL7.9解析如何搭建2节点RAC对1节点单机的DATA GU…...

gdb调试std::list和std::vector等容器的方法

GDB中print方法并不能直接打印STL容器中保存的变量&#xff0c;其实只要http://www.yolinux.com/TUTORIALS/src/dbinit_stl_views-1.03.txt这个文件保存为~/.gdbinit 就可以使用它提供的方法方便调试容器 指定启动文件&#xff1a;~/.gdbinit&#xff0c;下面的方法任选其一。…...

python stomp 转发activemq topic消息

import pysimplestomp 连接到ActiveMQ的Topic&#xff1a; # 连接ActiveMQ服务器 server "tcp://localhost:61613" topic "/topic/your_topic"# 连接到ActiveMQ的Topic destination f"destination://{topic}" connection pysimplestomp.con…...

Spring Boot使用AOP

一、为什么需要面向切面编程&#xff1f; 面向对象编程&#xff08;OOP&#xff09;的好处是显而易见的&#xff0c;缺点也同样明显。当需要为多个不具有继承关系的对象添加一个公共的方法的时候&#xff0c;例如日志记录、性能监控等&#xff0c;如果采用面向对象编程的方法&…...

C语言通过IXMLHttpRequest以get或post方式发送http请求获取服务器文本或xml数据

做过网页设计的人应该都知道ajax。 Ajax即Asynchronous Javascript And XML&#xff08;异步的JavaScript和XML&#xff09;。使用Ajax的最大优点&#xff0c;就是能在不更新整个页面的前提下维护数据。这使得Web应用程序更为迅捷地回应用户动作&#xff0c;并避免了在网络上发…...

QtRVSim(二)一个 RISC-V 程序的解码流程

继上一篇文章简单代码分析后&#xff0c;本文主要调研如何实现对指令的解析运行。 调试配置 使用 gdb 工具跟踪调试运行。 c_cpp_properties.json 项目配置&#xff1a; {"name": "QtRvSim","includePath": ["${workspaceFolder}/**&quo…...

x-cmd pkg | httpx - 为 Python 设计的下一代 HTTP 客户端库

目录 简介首次用户功能特点进一步探索 简介 HTTPX 是一个为 Python 设计的下一代 HTTP 客户端库&#xff0c;由 Tom Christie 创建。它提供了同步和异步的 API&#xff0c;并支持 HTTP/1.1 和 HTTP/2 协议。与 Requests 库类似&#xff0c;但增加了对异步请求的支持和 HTTP/2 …...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...