当前位置: 首页 > news >正文

Python中Numba库装饰器

一、运行速度是Python天生的短板

在这里插入图片描述

1.1 编译型语言:C++

对于编译型语言,开发完成以后需要将所有的源代码都转换成可执行程序,比如 Windows 下的.exe文件,可执行程序里面包含的就是机器码。只要我们拥有可执行程序,就可以随时运行,不用再重新编译了,也就是“一次编译,无限次运行”。
在运行的时候,我们只需要编译生成的可执行程序,不再需要源代码和编译器了,所以说编译型语言可以脱离开发环境运行。
编译型语言一般是不能跨平台的,也就是不能在不同的操作系统之间随意切换。

1.2 解释型语言:Python

对于解释型语言,每次执行程序都需要一边转换一边执行,用到哪些源代码就将哪些源代码转换成机器码,用不到的不进行任何处理。每次执行程序时可能使用不同的功能,这个时候需要转换的源代码也不一样。
因为每次执行程序都需要重新转换源代码,所以解释型语言的执行效率天生就低于编译型语言,甚至存在数量级的差距。计算机的一些底层功能,或者关键算法,一般都使用 C/C++ 实现,只有在应用层面(比如网站开发、批处理、小工具等)才会使用解释型语言。
在运行解释型语言的时候,我们始终都需要源代码和解释器,所以说它无法脱离开发环境。

1.3 速度对比:C++比Python快25倍

我不会C++语言、也没有C++语言的运行的环境,借用网友的对比结果:
在这里插入图片描述

编译后,运行C++代码,生成全部13-mers共6700万个大约需要2.42秒。这意味着运行相同算法,Python用时是C++的25倍多。

二、Numba使用与否的对比,计算1000万以内的素数

2.1 原生Python,计算1000万以内的素数
def U27_1000W以内的素数():import mathimport timedef is_prime(num):if num == 2:return Trueif num <= 1 or num % 2 == 0:return Falsefor div in range(3, int(math.sqrt(num) + 1), 2):if num % div == 0:return Falsereturn Truedef run_program(N):total = 0for i in range(N):if is_prime(i):total += 1return total# if __name__ == "__main__":N = 10000000start = time.time()total = run_program(N)end = time.time()print(f"1000万以内所有的素数有 {total} 个")print(f"纯Python耗时: {end - start} 秒\b")return end - start
2.2 Numba装饰器,计算1000万以内的素数
def U28_1000W以内的素数_Numba装饰器():import mathimport timefrom numba import njit, prange# @njit 相当于 @jit(nopython=True) @njitdef is_prime(num):if num == 2:        # 2为素数return Trueif num <= 1 or num % 2 == 0:     # 偶数中除了2都不是素数return Falsefor div in range(3, int(math.sqrt(num) + 1), 2):if num % div == 0:return Falsereturn True#使用Numba的prange来进行并发循环计算@njit(parallel = True)def run_program(N):total = 0#使用Numba提供的prange参数来进行并行计算for i in prange(N):if is_prime(i):total += 1return total# if __name__ == "__main__":N = 10000000start = time.time()total = run_program(N)end = time.time()print(f"1000万以内所有的素数有 {total} 个")print(f"Numba装饰器耗时: {end - start} 秒\b")return end - start
2.3 实测速度:使用numba装饰器,速度提升 22.0 倍,逼近C++
t0 = U27_1000W以内的素数()
t1 = U28_1000W以内的素数_Numba装饰器()
print(f'使用numba装饰器,速度提升 {round(t0/t1, 0)} 倍')1000万以内所有的素数有 664579 个
纯Python耗时: 86.781108856201171000万以内所有的素数有 664579 个
Numba装饰器耗时: 3.9410934448242188 秒
使用numba装饰器,速度提升 22.0

三、素数算法

质数也就是大于1的整数中,除了1和它本身以外不能被其他整数整除的数,也叫素数。

# 算法一:针对输入的数字x,我们可以遍历从2到x-1这个区间中的数,如果x能被这个区间中任意一个数整除,那么它就不是质数。
def is_prime1(x):for i in range(2, x):if x % i == 0:return Falsereturn True# 算法二:对算法一的优化,事实上只需要遍历从2到√x即可。
def is_prime2(x):for i in range(2, int(x ** 0.5) + 1):if x % i == 0:return Falsereturn True# 算法三:偶数中除了2都不是质数,且奇数的因数也没有偶数,因此可以进一步优化。
def is_prime3(x):if x == 2:return Trueelif x % 2 == 0:return Falsefor i in range(3, int(x ** 0.5) + 1, 2):if x % i == 0:return Falsereturn True# 算法四:任何一个自然数,总可以表示成以下六种形式之一:6n,6n+1,6n+2,6n+3,6n+4,6n+5(n=0,1,2...)我们可以发现,除了2和3,只有形如6n+1和6n+5的数有可能是质数。且形如6n+1和6n+5的数如果不是质数,它们的因数也会含有形如6n+1或者6n+5的数,因此可以得到如下算法:
def is_prime4(x):if (x == 2) or (x == 3):return Trueif (x % 6 != 1) and (x % 6 != 5):return Falsefor i in range(5, int(x ** 0.5) + 1, 6):if (x % i == 0) or (x % (i + 2) == 0):return Falsereturn True

四、Numba

4.1 官方文档

numba 是一款可以将 python 函数编译为机器代码的JIT编译器,经过 numba 编译的python 代码(仅限数组运算),其运行速度可以接近 C 或 FORTRAN 语言。
官方文档链接:http://numba.pydata.org/numba-doc/latest/index.html

相关文章:

Python中Numba库装饰器

一、运行速度是Python天生的短板 1.1 编译型语言&#xff1a;C 对于编译型语言&#xff0c;开发完成以后需要将所有的源代码都转换成可执行程序&#xff0c;比如 Windows 下的.exe文件&#xff0c;可执行程序里面包含的就是机器码。只要我们拥有可执行程序&#xff0c;就可以随…...

Spring Boot Aop 执行顺序

Spring Boot Aop 执行顺序 1. 概述 在 spring boot 项目中&#xff0c;使用 aop 增强&#xff0c;不仅可以很优雅地扩展功能&#xff0c;还可以让一写多用&#xff0c;避免写重复代码&#xff0c;例如&#xff1a;记录接口耗时&#xff0c;记录接口日志&#xff0c;接口权限&…...

100天精通鸿蒙从入门到跳槽——第16天:ArkTS条件渲染使用教程

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》 — Go语言学习之旅!《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!100天…...

【Linux C | 进程】Linux 进程间通信的10种方式(1)

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式

前面我们说了mybatis的缓存设计体系&#xff0c;这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的&#xff0c;Mybatis中存在两级缓存。分别是一级缓存(会话级)&#xff0c;和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…...

看图说话:Git图谱解读

很多新加入公司的同学在使用Git各类客户端管理代码的过程中对于Git图谱解读不太理解&#xff0c;我们常用的Git客户端是SourceTree&#xff0c;配合P4Merge进行冲突解决基本可以满足日常工作大部分需要。不同的Git客户端工具对图谱展示会有些许差异&#xff0c;以下是SourceTre…...

linux新增用户,指定home目录和bash脚本且加入到sudoer列表

前言 近3年一直用自动化脚本&#xff0c;搞得连useradd命令都不会用了。哈哈。 今天还碰到一个问题&#xff0c;有个系统没有‘useradd’和‘passwd’命令&#xff0c;直接蒙了。当然直接用apt install就能安装&#xff0c;不然还得自己编译折腾一会。新建用户 useradd -d /h…...

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程 和之前实现的YOLOv2一样&#xff0c;根据《YOLO目标检测》(ISBN:9787115627094)一书&#xff0c;在不脱离YOLOv3的大部分核心理念的前提下&#xff0c;重构一款较新的YOLOv3检测器&#xff0c;来对YOLOv3有…...

OpenGL/C++_学习笔记(四)空间概念与摄像头

汇总页 上一篇: OpenGL/C_学习笔记&#xff08;三&#xff09; 绘制第一个图形 OpenGL/C_学习笔记&#xff08;四&#xff09;空间概念与摄像头 空间概念与摄像头前置科技树: 线性代数空间概念流程简述各空间相关概念详述 空间概念与摄像头 前置科技树: 线性代数 矩阵/向量定…...

C语言2024-1-27练习记录

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>//int main() //{ // char c[15] { I, ,a,n,d, ,you,. }; // int i; // for(i 0; i < 15; i) //这个地方有几个地方需要注意一下&#xff0c;首先变量指定之后必须要加上英文状态下的分号 // printf("%c&q…...

深入解析HTTPS:安全机制全方位剖析

随着互联网的深入发展&#xff0c;网络传输中的数据安全性受到了前所未有的关注。HTTPS&#xff0c;作为HTTP的安全版本&#xff0c;为数据在客户端和服务器之间的传输提供了加密和身份验证&#xff0c;从而确保了数据的机密性、完整性和身份真实性。本文将详细探讨HTTPS背后的…...

【197】JAVA8调用阿里云对象存储API,保存图片并获取图片URL地址。

实际工作中&#xff0c;需要用阿里云对象存储保存图片&#xff0c;并且在上传图片到阿里云对象存储服务器后&#xff0c;获取图片在阿里云对象存储服务器的URL地址&#xff0c;以便给 WEB 前端显示。 阿里云对象存储上传图片的工具类 package zhangchao;import com.aliyun.os…...

2024.1.24 C++QT 作业

思维导图 练习题 1.提示并输入一个字符串&#xff0c;统计该字符中大写、小写字母个数、数字个数、空格个数以及其他字符个数 #include <iostream> #include <string.h> #include <array> using namespace std;int main() {string str;cout << "…...

jenkins部署过程记录

一、jenkins部署git链接找不到 原因分析&#xff1a; 机器的git环境不是个人git的权限&#xff0c;所以clone不了。Jenkins的master节点部署机器已经部署较多其他的job在跑&#xff0c;如果直接修改机器的git配置&#xff0c;很可能影响到其他的job clone 不了代码&#xff0c…...

JS-策略设计模式

设计模式&#xff1a;针对特定问题提出的简洁优化的解决方案 一个问题有多种处理方案&#xff0c;而且处理方案随时可能增加或减少比如&#xff1a;商场满减活动 满50元减5元满100元减15元满200元减35元满500元减100元 // 满减金额计算函数 function count(money, type) {if …...

漏洞复现-EduSoho任意文件读取漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…...

「QT」QString类的详细说明

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「...

微信小程序-04

rpx&#xff08;responsive pixel&#xff09;是微信小程序独有的&#xff0c;用来解决屏适配的尺寸单位。 import 后跟需要导入的外联样式表的相对路径&#xff0c;用 ; 表示语句结束。 定义在 app.wxss 中的样式为全局样式&#xff0c;作用于每一个页面。 在页面的 .wxss 文…...

什么是数据库的三级模式两级映象?

三级模式两级映象结构图 概念 三级模式 内模式&#xff1a;也称为存储模式&#xff0c;是数据物理结构和存储方式的描述&#xff0c;是数据在数据库内部的表示方式。定义所有的内部记录类型、索引和文件组织方式&#xff0c;以及数据控制方面的细节。模式&#xff1a;又称概念…...

初识人工智能,一文读懂机器学习之逻辑回归知识文集(6)

&#x1f3c6;作者简介&#xff0c;普修罗双战士&#xff0c;一直追求不断学习和成长&#xff0c;在技术的道路上持续探索和实践。 &#x1f3c6;多年互联网行业从业经验&#xff0c;历任核心研发工程师&#xff0c;项目技术负责人。 &#x1f389;欢迎 &#x1f44d;点赞✍评论…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

ServerTrust 并非唯一

NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...