Python中Numba库装饰器
一、运行速度是Python天生的短板
1.1 编译型语言:C++
对于编译型语言,开发完成以后需要将所有的源代码都转换成可执行程序,比如 Windows 下的.exe文件,可执行程序里面包含的就是机器码。只要我们拥有可执行程序,就可以随时运行,不用再重新编译了,也就是“一次编译,无限次运行”。
在运行的时候,我们只需要编译生成的可执行程序,不再需要源代码和编译器了,所以说编译型语言可以脱离开发环境运行。
编译型语言一般是不能跨平台的,也就是不能在不同的操作系统之间随意切换。
1.2 解释型语言:Python
对于解释型语言,每次执行程序都需要一边转换一边执行,用到哪些源代码就将哪些源代码转换成机器码,用不到的不进行任何处理。每次执行程序时可能使用不同的功能,这个时候需要转换的源代码也不一样。
因为每次执行程序都需要重新转换源代码,所以解释型语言的执行效率天生就低于编译型语言,甚至存在数量级的差距。计算机的一些底层功能,或者关键算法,一般都使用 C/C++ 实现,只有在应用层面(比如网站开发、批处理、小工具等)才会使用解释型语言。
在运行解释型语言的时候,我们始终都需要源代码和解释器,所以说它无法脱离开发环境。
1.3 速度对比:C++比Python快25倍
我不会C++语言、也没有C++语言的运行的环境,借用网友的对比结果:
编译后,运行C++代码,生成全部13-mers共6700万个大约需要2.42秒。这意味着运行相同算法,Python用时是C++的25倍多。
二、Numba使用与否的对比,计算1000万以内的素数
2.1 原生Python,计算1000万以内的素数
def U27_1000W以内的素数():import mathimport timedef is_prime(num):if num == 2:return Trueif num <= 1 or num % 2 == 0:return Falsefor div in range(3, int(math.sqrt(num) + 1), 2):if num % div == 0:return Falsereturn Truedef run_program(N):total = 0for i in range(N):if is_prime(i):total += 1return total# if __name__ == "__main__":N = 10000000start = time.time()total = run_program(N)end = time.time()print(f"1000万以内所有的素数有 {total} 个")print(f"纯Python耗时: {end - start} 秒\b")return end - start
2.2 Numba装饰器,计算1000万以内的素数
def U28_1000W以内的素数_Numba装饰器():import mathimport timefrom numba import njit, prange# @njit 相当于 @jit(nopython=True) @njitdef is_prime(num):if num == 2: # 2为素数return Trueif num <= 1 or num % 2 == 0: # 偶数中除了2都不是素数return Falsefor div in range(3, int(math.sqrt(num) + 1), 2):if num % div == 0:return Falsereturn True#使用Numba的prange来进行并发循环计算@njit(parallel = True)def run_program(N):total = 0#使用Numba提供的prange参数来进行并行计算for i in prange(N):if is_prime(i):total += 1return total# if __name__ == "__main__":N = 10000000start = time.time()total = run_program(N)end = time.time()print(f"1000万以内所有的素数有 {total} 个")print(f"Numba装饰器耗时: {end - start} 秒\b")return end - start
2.3 实测速度:使用numba装饰器,速度提升 22.0 倍,逼近C++
t0 = U27_1000W以内的素数()
t1 = U28_1000W以内的素数_Numba装饰器()
print(f'使用numba装饰器,速度提升 {round(t0/t1, 0)} 倍')1000万以内所有的素数有 664579 个
纯Python耗时: 86.78110885620117 秒
1000万以内所有的素数有 664579 个
Numba装饰器耗时: 3.9410934448242188 秒
使用numba装饰器,速度提升 22.0 倍
三、素数算法
质数也就是大于1的整数中,除了1和它本身以外不能被其他整数整除的数,也叫素数。
# 算法一:针对输入的数字x,我们可以遍历从2到x-1这个区间中的数,如果x能被这个区间中任意一个数整除,那么它就不是质数。
def is_prime1(x):for i in range(2, x):if x % i == 0:return Falsereturn True# 算法二:对算法一的优化,事实上只需要遍历从2到√x即可。
def is_prime2(x):for i in range(2, int(x ** 0.5) + 1):if x % i == 0:return Falsereturn True# 算法三:偶数中除了2都不是质数,且奇数的因数也没有偶数,因此可以进一步优化。
def is_prime3(x):if x == 2:return Trueelif x % 2 == 0:return Falsefor i in range(3, int(x ** 0.5) + 1, 2):if x % i == 0:return Falsereturn True# 算法四:任何一个自然数,总可以表示成以下六种形式之一:6n,6n+1,6n+2,6n+3,6n+4,6n+5(n=0,1,2...)我们可以发现,除了2和3,只有形如6n+1和6n+5的数有可能是质数。且形如6n+1和6n+5的数如果不是质数,它们的因数也会含有形如6n+1或者6n+5的数,因此可以得到如下算法:
def is_prime4(x):if (x == 2) or (x == 3):return Trueif (x % 6 != 1) and (x % 6 != 5):return Falsefor i in range(5, int(x ** 0.5) + 1, 6):if (x % i == 0) or (x % (i + 2) == 0):return Falsereturn True
四、Numba
4.1 官方文档
numba 是一款可以将 python 函数编译为机器代码的JIT编译器,经过 numba 编译的python 代码(仅限数组运算),其运行速度可以接近 C 或 FORTRAN 语言。
官方文档链接:http://numba.pydata.org/numba-doc/latest/index.html
相关文章:

Python中Numba库装饰器
一、运行速度是Python天生的短板 1.1 编译型语言:C 对于编译型语言,开发完成以后需要将所有的源代码都转换成可执行程序,比如 Windows 下的.exe文件,可执行程序里面包含的就是机器码。只要我们拥有可执行程序,就可以随…...

Spring Boot Aop 执行顺序
Spring Boot Aop 执行顺序 1. 概述 在 spring boot 项目中,使用 aop 增强,不仅可以很优雅地扩展功能,还可以让一写多用,避免写重复代码,例如:记录接口耗时,记录接口日志,接口权限&…...

100天精通鸿蒙从入门到跳槽——第16天:ArkTS条件渲染使用教程
博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》 — Go语言学习之旅!《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!100天…...

【Linux C | 进程】Linux 进程间通信的10种方式(1)
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

橘子学Mybatis08之Mybatis关于一级缓存的使用和适配器设计模式
前面我们说了mybatis的缓存设计体系,这里我们来正式看一下这玩意到底是咋个用法。 首先我们是知道的,Mybatis中存在两级缓存。分别是一级缓存(会话级),和二级缓存(全局级)。 下面我们就来看看这两级缓存。 一、准备工作 1、准备数据库 在此之…...

看图说话:Git图谱解读
很多新加入公司的同学在使用Git各类客户端管理代码的过程中对于Git图谱解读不太理解,我们常用的Git客户端是SourceTree,配合P4Merge进行冲突解决基本可以满足日常工作大部分需要。不同的Git客户端工具对图谱展示会有些许差异,以下是SourceTre…...
linux新增用户,指定home目录和bash脚本且加入到sudoer列表
前言 近3年一直用自动化脚本,搞得连useradd命令都不会用了。哈哈。 今天还碰到一个问题,有个系统没有‘useradd’和‘passwd’命令,直接蒙了。当然直接用apt install就能安装,不然还得自己编译折腾一会。新建用户 useradd -d /h…...

经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程
经典目标检测YOLO系列(三)YOLOV3的复现(1)总体网络架构及前向处理过程 和之前实现的YOLOv2一样,根据《YOLO目标检测》(ISBN:9787115627094)一书,在不脱离YOLOv3的大部分核心理念的前提下,重构一款较新的YOLOv3检测器,来对YOLOv3有…...

OpenGL/C++_学习笔记(四)空间概念与摄像头
汇总页 上一篇: OpenGL/C_学习笔记(三) 绘制第一个图形 OpenGL/C_学习笔记(四)空间概念与摄像头 空间概念与摄像头前置科技树: 线性代数空间概念流程简述各空间相关概念详述 空间概念与摄像头 前置科技树: 线性代数 矩阵/向量定…...
C语言2024-1-27练习记录
#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>//int main() //{ // char c[15] { I, ,a,n,d, ,you,. }; // int i; // for(i 0; i < 15; i) //这个地方有几个地方需要注意一下,首先变量指定之后必须要加上英文状态下的分号 // printf("%c&q…...

深入解析HTTPS:安全机制全方位剖析
随着互联网的深入发展,网络传输中的数据安全性受到了前所未有的关注。HTTPS,作为HTTP的安全版本,为数据在客户端和服务器之间的传输提供了加密和身份验证,从而确保了数据的机密性、完整性和身份真实性。本文将详细探讨HTTPS背后的…...
【197】JAVA8调用阿里云对象存储API,保存图片并获取图片URL地址。
实际工作中,需要用阿里云对象存储保存图片,并且在上传图片到阿里云对象存储服务器后,获取图片在阿里云对象存储服务器的URL地址,以便给 WEB 前端显示。 阿里云对象存储上传图片的工具类 package zhangchao;import com.aliyun.os…...

2024.1.24 C++QT 作业
思维导图 练习题 1.提示并输入一个字符串,统计该字符中大写、小写字母个数、数字个数、空格个数以及其他字符个数 #include <iostream> #include <string.h> #include <array> using namespace std;int main() {string str;cout << "…...

jenkins部署过程记录
一、jenkins部署git链接找不到 原因分析: 机器的git环境不是个人git的权限,所以clone不了。Jenkins的master节点部署机器已经部署较多其他的job在跑,如果直接修改机器的git配置,很可能影响到其他的job clone 不了代码,…...
JS-策略设计模式
设计模式:针对特定问题提出的简洁优化的解决方案 一个问题有多种处理方案,而且处理方案随时可能增加或减少比如:商场满减活动 满50元减5元满100元减15元满200元减35元满500元减100元 // 满减金额计算函数 function count(money, type) {if …...

漏洞复现-EduSoho任意文件读取漏洞(附漏洞检测脚本)
免责声明 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…...

「QT」QString类的详细说明
✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「...

微信小程序-04
rpx(responsive pixel)是微信小程序独有的,用来解决屏适配的尺寸单位。 import 后跟需要导入的外联样式表的相对路径,用 ; 表示语句结束。 定义在 app.wxss 中的样式为全局样式,作用于每一个页面。 在页面的 .wxss 文…...

什么是数据库的三级模式两级映象?
三级模式两级映象结构图 概念 三级模式 内模式:也称为存储模式,是数据物理结构和存储方式的描述,是数据在数据库内部的表示方式。定义所有的内部记录类型、索引和文件组织方式,以及数据控制方面的细节。模式:又称概念…...

初识人工智能,一文读懂机器学习之逻辑回归知识文集(6)
🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…...

Docker 离线安装指南
参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性,不同版本的Docker对内核版本有不同要求。例如,Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本,Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

react菜单,动态绑定点击事件,菜单分离出去单独的js文件,Ant框架
1、菜单文件treeTop.js // 顶部菜单 import { AppstoreOutlined, SettingOutlined } from ant-design/icons; // 定义菜单项数据 const treeTop [{label: Docker管理,key: 1,icon: <AppstoreOutlined />,url:"/docker/index"},{label: 权限管理,key: 2,icon:…...

【基于阿里云搭建数据仓库(离线)】使用UDTF时出现报错“FlatEventUDTF cannot be resolved”
目录 问题: 可能的原因有: 解决方法: 问题: 已经将包含第三方依赖的jar包上传到dataworks,并且成功注册函数,但是还是报错:“FlatEventUDTF cannot be resolved”,如下:…...

【web笔记】JavaScript实现有动画效果的进度条
文章目录 1 实现效果2 实现代码 1 实现效果 2 实现代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"utf-8"><style>#progress {width: 300px;height: 20px;border-radius: 0; /* 移除圆角 */-webkit-appearance…...

【人工智能 | 项目开发】Python Flask实现本地AI大模型可视化界面
文末获取项目源码。 文章目录 项目背景项目结构app.py(后端服务)index.html(前端界面)项目运行项目图示项目源码项目背景 随着人工智能技术的快速发展,大语言模型在智能交互领域展现出巨大潜力。本项目基于 Qwen3-1.7B 模型,搭建一个轻量化的智能聊天助手,旨在为用户提…...