当前位置: 首页 > news >正文

bert实现完形填空简单案例

使用 bert 来实现一个完形填空的案例,使用预训练模型 bert-base-chinese ,这个模型下载到跟代码同目录下即可,下载可参考:bert预训练模型下载-CSDN博客

通过这个案例来了解一下怎么使用预训练模型来完成下游任务,算是对怎么使用 bert 的流程有一个初步的了解,代码都写注释了,直接看代码注释就好:

import torch
from transformers import BertTokenizer, BertForMaskedLM, BertConfig#加载预训练模型 tokenizer (vocabulary),词表文件
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')#输入文本
# [CLS] 表示段落开始,只有一个
# [SEP] 表示句子的结束,可以有多个
text = "[CLS] 我是谁 ? [SEP] zjk原来是程序员 [SEP]"
# 转换输入文本,有点像分词,如词在词表中找不到,会以 # 开头
tokenized_text = tokenizer.tokenize(text)
print(tokenized_text)# 将索引为 11 的字用 [MASK] 屏蔽,如果被屏蔽的是 # 那么预测不出来结果
masked_index = 11  # 掩码一个标记,用' BertForMaskedLM '预测回来
tokenized_text[masked_index] = '[MASK]'
print(tokenized_text)# 将标记转换为词汇表索引
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
print(indexed_tokens)# 将输入转换为PyTorch张量
tokens_tensor = torch.tensor([indexed_tokens])
print(tokens_tensor)#指定设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)# 加载预训练模型 (weights)
model = BertForMaskedLM.from_pretrained('bert-base-chinese')
# 为了确保模型在处理新样本时能提供稳定且具有代表性的预测结果,禁用dropout和batch normalization等在训练阶段启用但在预测时应关闭的功能。
model.eval()
model.to(device)# 段标识索引,标识输入文本中的第一句,第2据,0对应属于第一个句子的,1代表对应属于第二个句子的
segments_ids = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
segments_tensors = torch.tensor([segments_ids]).to(device)tokens_tensor = tokens_tensor.to(device)  # 输入句子的张量,其实就是每个字在词表中的索引
# 预测所有的tokens,可以理解为标准固定写法
with torch.no_grad():  # 模型不会累积梯度,适合用于预测任务outputs = model(tokens_tensor, token_type_ids=segments_tensors)  # 传入了tokens张量和对应的句子类型张量
# BERT模型的输出是一个元组,其中第一个元素通常是 mask 对应于每个位置上所有可能token的概率分布,
# 形状与输入tokens张量相同(这里为 [1, 16, 21128],表示batch大小为1、序列长度为16、词汇表大小为21128的三维张量)
# 的是模型在每次迭代更新参数时处理的样本数量,这里我们就处理了一个样本
predictions = outputs[0]  # [1, 16, 21128]
# 找到在mask位置上的概率最高的token索引。masked_index 是待预测 token 在 tokens 张量中的位置
predicted_index = torch.argmax(predictions[0, masked_index]).item()
predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]  # 转成单词
print('Predicted token is:', predicted_token)

运行结果:

相关文章:

bert实现完形填空简单案例

使用 bert 来实现一个完形填空的案例,使用预训练模型 bert-base-chinese ,这个模型下载到跟代码同目录下即可,下载可参考:bert预训练模型下载-CSDN博客 通过这个案例来了解一下怎么使用预训练模型来完成下游任务,算是对…...

Jmeter 分布式测试

Jmeter单机进行压测,受到单台机器的性能影响,Jmeter支持分布式测试,用一个控制节点去控制多个工作节点去模拟更多的用户。 版本信息 内容版本号JDK1.8Jmeter5.6.2 分布式测试原理 jmeter 官网对分布式测试有说明,jmeter分布式…...

在 Ubuntu 上安装 Docker Engine

系列文章目录 前言 要在 Ubuntu 上开始使用 Docker Engine,请确保满足先决条件,然后按照安装步骤进行操作。 一、先决条件 注意事项 如果您使用 ufw 或 firewalld 管理防火墙设置,请注意当您使用 Docker 暴露容器端口时,这些端口…...

Mac安装nvm,安装多个不同版本node,指定node版本

一.安装nvm brew install nvm二。配置文件 touch ~/.zshrc echo export NVM_DIR~/.nvm >> ~/.zshrc echo source $(brew --prefix nvm)/nvm.sh >> ~/.zshrc三.查看安装版本 nvm -vnvm常用命令如下:nvm ls :列出所有已安装的 node 版本nvm…...

【开源】基于JAVA+Vue+SpringBoot的智慧家政系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服务4.2 新增单条服务订单4.3 新增留言反馈4.4 小程序登录4.5 小程序数据展示 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的智慧家政系统&#xff0…...

Python NLP深度学习进阶:自然语言处理

自然语言处理(Natural Language Processing,NLP)是人工智能领域中的一个重要分支,涉及到处理和理解人类语言的方法和技术。随着深度学习的快速发展,NLP的研究和应用也在不断进步。 在Python中,有许多强大的…...

STM32单片机基本原理与应用(三)

矩阵键盘工作原理 矩阵键盘由多个独立按键组成,按键的一端接地,一端接MCU的GPIO。当按键没有被按下时,电路其实是一个断路,将单片机该引脚设置成输入上拉状态,读到的电平为高电平。当按下按键时,引脚会被拉…...

Android studio布局详解

文章目录 一、Android studio布局详解二、Android studio六大布局案例三、优缺点四、热门文章 一、Android studio布局详解 Android Studio是一种用于开发Android应用程序的集成开发环境(IDE),用于设计和编辑Android应用程序的用户界面布局。在Android …...

第四篇:怎么写express的路由(接口+请求)

🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📘 引言: &#x1f4…...

算法学习记录:有关树的基础

前言: 算法学习记录不是算法介绍,本文记录的是从零开始的学习过程(见到的例题,代码的理解……),所有内容按学习顺序更新,而且不保证正确,如有错误,请帮助指出。 学习工具…...

2. 《大数据之路:阿里巴巴大数据实践》学习笔记,持续更新ing

笔记链接(飞书):https://t0s016els2a.feishu.cn/docx/JrNydGljUonH1ExcGCpcoC8unTb 密码:r661391 该书籍部分目录如下: 文章目录 第1篇 数据技术篇第2章 日志采集2.1 浏览器的页面日志采集2.1.1 页面浏览日志采集流程2.1.2 页面交互日志采集…...

编程笔记 html5cssjs 062 JavaScrip如何使用

编程笔记 html5&css&js 062 JavaScrip如何使用 一、 引入JavaScript二、DOM操作三、事件处理四、数据验证五、异步编程六、使用库和框架七、模块化开发小结 开始学习使用JavaScript进行前端开发的基本步骤和常见实践。 这里先列示基本的步骤和内容,后面慢慢…...

【前端基础--7】

DOM操作 DOM&#xff0c;全称(Document Object Model)&#xff0c;文档对象模型。 提供操作HTML的方法&#xff08;操作页面元素&#xff09; 获取节点 --- 操作元素标签 <body><div id"box">我是盒子标签</div><p class"text"&g…...

微信小程序如何搜索iBeacon设备

1.首先在utils文件夹下创建bluetooth.js和ibeacon.js 2.在 bluetooth.js文件中写入 module.exports {initBluetooth: function () {// 初始化蓝牙模块wx.openBluetoothAdapter({success: function (res) {console.log(蓝牙模块初始化成功);},fail: function (res) {console.l…...

JVM篇:垃圾回收算法

标记清除 通过遍历GC Root后得到不再被引用的对象&#xff0c;对没被引用的对象做一个标记处理&#xff0c;然后对其进行清除。 优点&#xff1a;速度快 缺点&#xff1a;会产生内存碎片&#xff0c;可能会导致空闲的内存足够保存对象&#xff0c;但由于不连续而保存失败。 标…...

2024年数学建模美赛 分析与编程

2024年数学建模美赛 分析与编程 1、本专栏将在2024年美赛题目公布后&#xff0c;进行深入分析&#xff0c;建议收藏&#xff1b; 2、本专栏对2023年赛题&#xff0c;其它题目分析详见专题讨论&#xff1b; 2023年数学建模美赛A题&#xff08;A drought stricken plant communi…...

05-Nacos-配置中心接入

1、pom依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId></dependency> 2、配置文件 spring:application:name: nacos-config## 当前环境&#xff0c;这个和…...

服务端开发小记02——Maven

这里写目录标题 Maven简介Maven在Linux下的安装Maven常用命令 Maven简介 Apache Maven Project是一个apache的开源项目&#xff0c;是用于构建和管理Java项目的工具包。 用Maven可以方便地创建项目&#xff0c;基于archetype可以创建多种类型的java项目&#xff1b;Maven仓库…...

DjangoURL调度器(一)

一、介绍 当一个用户请求 Django 站点的一个页面&#xff0c;下面是 Django 系统决定执行哪个 Python 代码使用的算法&#xff1a; Django确定要使用的根URLconf模块&#xff0c;一般是在settings中的ROOT_URLCONF设置的值&#xff0c;但是如果传入 HttpRequest 对象具有一个ur…...

Typora 无法导出 pdf 问题的解决

目录 问题描述 解决困难 解决方法 问题描述 我的 Windows 下&#xff0c;以前&#xff08;Windows 11&#xff09; Typora 可以顺利较快地由 .md 导出 .pdf 文件&#xff0c;此功能当然非常实用与重要。 然而&#xff0c;有一次电脑因故重装了系统&#xff08;刷机&#x…...

uniapp封装公共的方法或者数据请求方法

仅供自己参考&#xff0c;不是每个页面都用到这个方法&#xff0c;所以我直接在用到的页面引用该公用方法&#xff1a; 1、新建一个util.js文件 export const address function(options){return new Promise((resolve,reject)>{uni.request({url:"https://x.cxniu.…...

SpringBoot AOP应用(公共字段填充)

背景 在很多场景下&#xff0c;我们对需要对一些公共字段进行赋值操作&#xff0c;如果我们每一个公共字段都进行代码赋值那无疑会增加很多重复无用代码&#xff0c;都会导致我们的 代码臃肿&#xff0c;所以我们使用AOP切面编程&#xff0c;实现功能增强&#xff0c;来完成公…...

NIO案例-聊天室

NIO案例-聊天室 1. 聊天室服务端编写 package com.my.io.chat.server; ​ import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.*; import java.nio.charset.StandardCharsets; import java.util.Iterato…...

文心一言情感关怀之旅

【AGIFoundathon】文心一言情感关怀之旅,让我们一起来体验吧! 上传一张照片,用ernie-bot生成专属于你的小故事! 此项目主要使用clip_interrogator获取图片的关键信息,然后将此关键信息用百度翻译API翻译成中文后,使用封装了⼀⾔API的Ernie Bot SDK(ernie-bot)生成故事…...

mac电脑安卓文件传输工具:Android File Transfer直装版

Android File Transfer&#xff08;AFT&#xff09;是一款用于在Mac操作系统上与Android设备之间传输文件。它允许用户将照片、音乐、视频和其他文件从他们的Android手机或平板电脑传输到Mac电脑&#xff0c;以及将文件从Mac上传到Android设备。 下载地址&#xff1a;https://w…...

第九篇【传奇开心果系列】beeware的toga开发移动应用示例:人口普查手机应用

传奇开心果博文系列 系列博文目录beeware的toga开发移动应用示例系列博文目录一、项目目标二、安装依赖三、实现应用雏形示例代码四、扩展功能和组件的考量五、添加更多输入字段示例代码六、添加验证功能示例代码七、添加数据存储功能示例代码八、添加数据展示功能示例代码九、…...

14.5 Flash查询和添加数据库数据

14.5 Flash查询和添加数据库数据 在Flash与数据库通讯的实际应用中&#xff0c;如何实现用户的登录与注册是经常遇到的一个问题。登录实际上就是ASP根据Flash提供的数据查询数据库的过程&#xff0c;而注册则是ASP将Flash提供的数据写入数据库的过程。 1.启动Access2003&…...

[C#]winform部署yolov7+CRNN实现车牌颜色识别车牌号检测识别

【官方框架地址】 https://github.com/WongKinYiu/yolov7.git 【框架介绍】 Yolov7是一种目标检测算法&#xff0c;全称You Only Look Once version 7。它是继Yolov3和Yolov4之后的又一重要成果&#xff0c;是目标检测领域的一个重要里程碑。 Yolov7在算法结构上继承了其前…...

VBA技术资料MF111:将表对象转换为正常范围

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。我的教程一共九套&#xff0c;分为初级、中级、高级三大部分。是对VBA的系统讲解&#xff0c;从简单的入门&#xff0c;到…...

Nginx代理服务器、HTTP调度、TCP/UDP调度、Nginx优化、HTTP错误代码、状态页面、压力测试

1 案例1&#xff1a;Nginx反向代理 1.1 问题 使用Nginx实现Web反向代理功能&#xff0c;实现如下功能&#xff1a; 后端Web服务器两台&#xff0c;可以使用httpd实现Nginx采用轮询的方式调用后端Web服务器两台Web服务器的权重要求设置为不同的值最大失败次数为2&#xff0c;…...