论文阅读:Vary-toy论文阅读笔记
目录
- 引言
- 整体结构图
- 方法介绍
- 训练vision vocabulary阶段
- PDF数据
- 目标检测数据
- 训练Vary-toy阶段
- Vary-toy结构
- 数据集情况
引言
论文:Small Language Model Meets with Reinforced Vision Vocabulary
Paper | Github | Demo

说来也巧,之前在写论文阅读:Vary论文阅读笔记文章时,正好看到了Vary-toy刚刚发布。
这次,咱也是站在了时代的前沿,这不赶紧先睹为快。让我看看相比于Vary,Vary-toy做了哪些改进?
整体结构图

从整体结构来看,仍然沿用了Vary系列结构。先利用Vary-tiny + pipeline训练一个Vision vocabulary,之后在pre-train和SFT阶段将new vocabulary与CLIP的Vocabulary相结合,来训练Qwen-1.8B模型。
不同于Vary,用了Qwen-7B,这次用了Qwen-1.8B,模型更小,对于部署使用更加友好。
这次除了原有的PDF数据外,又增加了目标检测的数据集,让Vary-toy更加具有通用性。
方法介绍
作者在设计Vary-toy时,主要侧重解决以下两个问题:
- 如何基于Vary-tiny + pipeline产生一个更加practical vision vocabulary ?
- 如何在不损坏Qwen-1.8B模型特征前提下,利用new vision vocabulary来使Vary-toy-1.8B产生新的特征?
训练vision vocabulary阶段
出发点是:
- vision vocabulary network是由SAM-base作为初始化模型训练而来的。这样做,可以获得SAM对文本的感知能力。但是也存在遗忘SAM中对自然物体目标的感知能力。
- 作者认为,只将密集文本的视觉知识写入80M的网络是浪费。
PDF数据

该部分与Vary中工作一致,看着量级更大了。最终准备了2M英文文档数据和2M的中文文档数据。PDF来源主要是arXiv、CC-MAIN-2021-31-PDF-UNTRUNCATED和e-books。示例数据如上图。
私以为该部分仍然有很大进步空间。如在提取PDF内容时,可以考虑到版面的因素,使得内容更加有语义。当然,这只是猜测,也许作者就是这么做的呢!
目标检测数据
为了充分利用来自SAM模型对自然图像的感知能力,作者引入了目标检测数据到训练vision vocabulary过程中。所用数据主要来自Object365和OpenImage。
因为部分图像中存在太多的物体,这会超出OPT-125M的token数量限制。因此作者做了两步处理:
- 如果图像中物体框数目<30个,则允许Vary-tiny + pipeline过程中的prompt为Detect all objects in this image
- 如果图像中物体框数目>30个,则更换prompt模板为:Detect class1, class2, … in this image.
最终,整理出来的目标价检测数据大约有3M条。
训练Vary-toy阶段
Vary-toy结构
Vary-toy主体结构与Vary相同,但是有些微小区别:
- 当输入图像( H × W H\times W H×W)进入new vision vocabulary分支时,图像会被直resize到1024 x 1024,而送入CLIP分支时,则中心裁剪为224x224
- 直接将vision vocabulary分支和CLIP分支输出拼起来,正好是Qwen-1.8B的输入channel
- 相比于Vary,为了让变化小一些,作者仍然在vision vocabulary网络后添加了embedding layer
数据集情况
TODO
相关文章:
论文阅读:Vary-toy论文阅读笔记
目录 引言整体结构图方法介绍训练vision vocabulary阶段PDF数据目标检测数据 训练Vary-toy阶段Vary-toy结构数据集情况 引言 论文:Small Language Model Meets with Reinforced Vision Vocabulary Paper | Github | Demo 说来也巧,之前在写论文阅读&…...
【Linux】开始使用 vim 吧!!!
Linux 1 what is vim ?2 vim基本概念3 vim的基本操作 !3.1 vim的快捷方式3.1.1 复制与粘贴3.1.2 撤销与剪切3.1.3 字符操作 3.2 vim的光标操作3.3 vim的文件操作 总结Thanks♪(・ω・)ノ感谢阅读下一篇文章见!…...
多线程面试合集
前言 前文介绍了JVM相关知识,本文将重点介绍多线程相关知识以及工作中的一些经验。 多线程面试合集 什么是多线程?为什么我们需要多线程? 多线程是指在一个进程中同时执行多个线程,每个线程可以执行不同的任务。多线程可以提高…...
从微服务到云原生
很多文章介绍云原生概念,说它包含微服务,又包含了其它几个方面的东西,还扯到文化层面、组织层面和技术层面,搞技术的人一听到公司文化问题和组织部门问题,就十分地晕眩,不能让我好好地坐下来写写代码、搞搞…...
bxCAN 主要特性
bxCAN 主要特性 ● 支持 2.0 A 及 2.0 B Active 版本 CAN 协议 ● 比特率高达 1 Mb/s ● 支持时间触发通信方案 发送 ● 三个发送邮箱 ● 可配置的发送优先级 ● SOF 发送时间戳 接收 ● 两个具有三级深度的接收 FIFO ● 可调整的筛选器组: — CAN1 和…...
武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
考研数学武忠祥基础主要学习以下几个方面的内容: 1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。 2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本…...
用JavaFX写了一个简易的管理系统
文章目录 前言正文一、最终效果1.1 主页面1.2 动物管理页面-初始化1.3 动物管理页面-修改&新增1.4 动物管理页面-删除&批量删除 二、核心代码展示2.1 启动类2.2 数据库配置-db.setting2.3 日志文本域组件2.4 自定义表格视图组件2.5 自定义分页组件2.6 动物管理页面2.7 …...
第二百九十回
文章目录 1. 概念介绍2. 方法与细节2.1 实现方法2.2 具体细节 3. 示例代码4. 内容总结 我们在上一章回中介绍了"如何混合选择多个图片和视频文件"相关的内容,本章回中将介绍如何通过相机获取视频文件.闲话休提,让我们一起Talk Flutter吧。 1. …...
bert实现完形填空简单案例
使用 bert 来实现一个完形填空的案例,使用预训练模型 bert-base-chinese ,这个模型下载到跟代码同目录下即可,下载可参考:bert预训练模型下载-CSDN博客 通过这个案例来了解一下怎么使用预训练模型来完成下游任务,算是对…...
Jmeter 分布式测试
Jmeter单机进行压测,受到单台机器的性能影响,Jmeter支持分布式测试,用一个控制节点去控制多个工作节点去模拟更多的用户。 版本信息 内容版本号JDK1.8Jmeter5.6.2 分布式测试原理 jmeter 官网对分布式测试有说明,jmeter分布式…...
在 Ubuntu 上安装 Docker Engine
系列文章目录 前言 要在 Ubuntu 上开始使用 Docker Engine,请确保满足先决条件,然后按照安装步骤进行操作。 一、先决条件 注意事项 如果您使用 ufw 或 firewalld 管理防火墙设置,请注意当您使用 Docker 暴露容器端口时,这些端口…...
Mac安装nvm,安装多个不同版本node,指定node版本
一.安装nvm brew install nvm二。配置文件 touch ~/.zshrc echo export NVM_DIR~/.nvm >> ~/.zshrc echo source $(brew --prefix nvm)/nvm.sh >> ~/.zshrc三.查看安装版本 nvm -vnvm常用命令如下:nvm ls :列出所有已安装的 node 版本nvm…...
【开源】基于JAVA+Vue+SpringBoot的智慧家政系统
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服务4.2 新增单条服务订单4.3 新增留言反馈4.4 小程序登录4.5 小程序数据展示 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的智慧家政系统࿰…...
Python NLP深度学习进阶:自然语言处理
自然语言处理(Natural Language Processing,NLP)是人工智能领域中的一个重要分支,涉及到处理和理解人类语言的方法和技术。随着深度学习的快速发展,NLP的研究和应用也在不断进步。 在Python中,有许多强大的…...
STM32单片机基本原理与应用(三)
矩阵键盘工作原理 矩阵键盘由多个独立按键组成,按键的一端接地,一端接MCU的GPIO。当按键没有被按下时,电路其实是一个断路,将单片机该引脚设置成输入上拉状态,读到的电平为高电平。当按下按键时,引脚会被拉…...
Android studio布局详解
文章目录 一、Android studio布局详解二、Android studio六大布局案例三、优缺点四、热门文章 一、Android studio布局详解 Android Studio是一种用于开发Android应用程序的集成开发环境(IDE),用于设计和编辑Android应用程序的用户界面布局。在Android …...
第四篇:怎么写express的路由(接口+请求)
🎬 江城开朗的豌豆:个人主页 🔥 个人专栏 :《 VUE 》 《 javaScript 》 📝 个人网站 :《 江城开朗的豌豆🫛 》 ⛺️ 生活的理想,就是为了理想的生活 ! 目录 📘 引言: Ǵ…...
算法学习记录:有关树的基础
前言: 算法学习记录不是算法介绍,本文记录的是从零开始的学习过程(见到的例题,代码的理解……),所有内容按学习顺序更新,而且不保证正确,如有错误,请帮助指出。 学习工具…...
2. 《大数据之路:阿里巴巴大数据实践》学习笔记,持续更新ing
笔记链接(飞书):https://t0s016els2a.feishu.cn/docx/JrNydGljUonH1ExcGCpcoC8unTb 密码:r661391 该书籍部分目录如下: 文章目录 第1篇 数据技术篇第2章 日志采集2.1 浏览器的页面日志采集2.1.1 页面浏览日志采集流程2.1.2 页面交互日志采集…...
编程笔记 html5cssjs 062 JavaScrip如何使用
编程笔记 html5&css&js 062 JavaScrip如何使用 一、 引入JavaScript二、DOM操作三、事件处理四、数据验证五、异步编程六、使用库和框架七、模块化开发小结 开始学习使用JavaScript进行前端开发的基本步骤和常见实践。 这里先列示基本的步骤和内容,后面慢慢…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
