当前位置: 首页 > news >正文

【动态规划】【字符串】【行程码】1531. 压缩字符串

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode 1531. 压缩字符串 II

行程长度编码 是一种常用的字符串压缩方法,它将连续的相同字符(重复 2 次或更多次)替换为字符和表示字符计数的数字(行程长度)。例如,用此方法压缩字符串 “aabccc” ,将 “aa” 替换为 “a2” ,“ccc” 替换为` “c3” 。因此压缩后的字符串变为 “a2bc3” 。
注意,本问题中,压缩时没有在单个字符后附加计数 ‘1’ 。
给你一个字符串 s 和一个整数 k 。你需要从字符串 s 中删除最多 k 个字符,以使 s 的行程长度编码长度最小。
请你返回删除最多 k 个字符后,s 行程长度编码的最小长度 。
示例 1:
输入:s = “aaabcccd”, k = 2
输出:4
解释:在不删除任何内容的情况下,压缩后的字符串是 “a3bc3d” ,长度为 6 。最优的方案是删除 ‘b’ 和 ‘d’,这样一来,压缩后的字符串为 “a3c3” ,长度是 4 。
示例 2:
输入:s = “aabbaa”, k = 2
输出:2
解释:如果删去两个 ‘b’ 字符,那么压缩后的字符串是长度为 2 的 “a4” 。
示例 3:
输入:s = “aaaaaaaaaaa”, k = 0
输出:3
解释:由于 k 等于 0 ,不能删去任何字符。压缩后的字符串是 “a11” ,长度为 3 。
提示:
1 <= s.length <= 100
0 <= k <= s.length
s 仅包含小写英文字母

动态规划

预处理

将s转成arr,每个元素是{字符,长度}。
比如:aabbaa变成{{‘a’,2},{'b",2},{‘a’,2}}
长度0,表示0个字符。长度1,表示1个字符。长度2,表示2到9.长度3,表示10到99,长度4,表示100及以上。

动态规划的状态表示

pre[j] 表示处理完arr[0,i)后, 用去j个字符的最短行程码。
dp[j] 表示处理完arr[0,i]后, 用去j个字符的最短行程码。
pre2[ch][j][m] 表示处理完arr[0,i)后,,以ch+'a’结尾,用去j个字符,最后有m个ch的最短行程码。
dp2表示处理完arr[0,i]…

动态规划的转移方程

arr[i]没有和前面的元素合并:
枚举j,枚举减少长度:0、1、2、3、4
arr[j]和前面的合并:
枚举j,m 再枚举减少长度:0、1、2、3 、4
合并示例:aa d d ‾ \underline{dd} ddaa 删除dd后,就是4个aa了。

动态规划的初始状态

pre[0]=0,其它100。
pre2全部100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

pre.back().back()

代码

核心代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<int> pre(lenArr + 1, 100);pre[0] = 0;vector<vector<vector<int>>> dp3(26, vector<vector<int>>(lenArr+1, vector<int>(lenArr + 1, 100)));for (const auto& [ch, cnt] : arr){vector<int> dp(lenArr + 1, 100);auto& dp2 = dp3[ch - 'a'];auto pre2 = dp2;auto Update = [&lenArr,&dp,&dp2](int j, int iCodeLen,const char& chEnd,int iEndLen){if (j > lenArr){return;}dp[j] = min(dp[j], iCodeLen);if (iEndLen <= lenArr){dp2[j][iEndLen] = min(dp2[j][iEndLen], iCodeLen);}};			//处理没合并for (int j = 0; j <= lenArr; j++){	const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen,ch,cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2,ch, MaxLen(curCodeLen2));}}for (int j = 0; j <= lenArr; j++){for (int m = 0; m <= j; m++){const int curCodeLen = GetCodeLen(cnt+m );Update(j + cnt, pre2[j][m] - GetCodeLen(m) + GetCodeLen(m + cnt), ch, m + cnt);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j -m + MaxLen(curCodeLen2), pre2[j][m] - GetCodeLen(m) + curCodeLen2,ch, MaxLen(curCodeLen2));}}}pre.swap(dp);	}return *std::min_element(pre.begin() + pre.size() - k-1, pre.end());}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	string s;int k;{Solution sln;s = "aaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(1, res);}{Solution sln;s = "aaab", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaabcccd", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(4, res);}{Solution sln;s = "aabbaa", k = 2;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(2, res);}{Solution sln;s = "aaaaaaaaaaa", k = 0;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}{Solution sln;s = "spnskpulpsiqagreoajsltdrdlnpsdqapmsdlnlirasgfijafeoqjnddpaifsqpghshclqummgootsmkcgneofrkboirkplqijoi", k = 25;auto res = sln.getLengthOfOptimalCompression(s, k);Assert(3, res);}}

动态规划优化

前一个解法的空间复杂度在过与不过的边缘。

动态规划的状态表示

dp[i][j] 表示处理了arr[0,i),选择了j个字符的最短行程码。

动态规划的转移方程

分两种情况: 和前面的项目合并,和前面的项不合并。细节同上。

动态规划的初始值

dp[0][0]=0,其它100。

动态规划的填表顺序

i从小到大,j从小到大。

动态规划的返回值

dp.back的后k+1个元素的最小值。

优化后的代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int lenArr = s.length();vector<pair<char, int>> arr;for (int left = 0, i = 0; i <= s.length(); i++){if ((i >= s.length()) || (s[left] != s[i])){arr.emplace_back(s[left], i - left);left = i;}}vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};auto MaxLen = [&vLen](int len){return vLen[len + 1] - 1;};vector<vector<int>> dp(arr.size() + 1, vector<int>(lenArr + 1, 100));dp[0][0] = 0;int i = -1;for (const auto& [ch, cnt] : arr){i++;auto& pre = dp[i];auto& cur = dp[i + 1];auto Update = [&lenArr, &cur](int j, int iCodeLen){if (j > lenArr){return;}cur[j] = min(cur[j], iCodeLen);};//处理没合并for (int j = 0; j <= lenArr; j++){const int curCodeLen = GetCodeLen(cnt);Update(j + cnt, pre[j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), pre[j] + curCodeLen2);}}int cnt2 = 0;for (int m = i ; m >= 0; m--){if (arr[m].first != ch){continue;}cnt2 += arr[m].second;//合并后的字符数		const int curCodeLen = GetCodeLen(cnt2);for (int j = 0; j <= lenArr; j++){Update(j + cnt2, dp[m][j] + curCodeLen);for (int curCodeLen2 = curCodeLen - 1; curCodeLen2 >= 0; curCodeLen2--){//处理 行程妈缩短1,2...Update(j + MaxLen(curCodeLen2), dp[m][j] + curCodeLen2);}}}			}return *std::min_element(dp.back().begin() + dp.back().size() - k - 1, dp.back().end());}
};

动态规划三

arr数组,少许提升性能,但增加了复杂度,不采用。

动态规划的状态

dp[i][j]表示 从s[0,i)中删除j个字符 最短的行程码。

动态规划的转移方程

令x = dp[i+1][j]
情况一:删除s[i+1]
那x等于dp[i][j-1] 公式一
情况二:不删除,且可能和前面的字符结合后,删除。
不市一般性,令s[i]=‘a’,且它的前面只有三个’a’,小标分别为i1,i2,i3。
情况a:
s[i]没有和其它’a’结合,则x= dp[i][j]+GetCodeLen (1)。 公式二
情况b:
s[i]和s[i3]结合,s(i3,i)之间非’a’的数量为diff,全部删除。
b1: i和i3 都没删除。 x = dp[i3][j-diff] + GetCodeLen(2) → \rightarrow dp[i-diff-1][j-diff] + GetCodeLen(2) 公式三
b2: i3删除。x = dp[i3][j-diff-1] + GetCodeLen(1) → \rightarrow dp[i-diff-1][j-diff-1] + GetCodeLen(1) 就是公式二和公式一结合。
情况c:
s[i]和s[i2] s[i3]结合: s(i2,i)之间非’a’的数量为diff2,全部删除。
c1,不删除’a’。 dp[i2][j-diff2] + GetCodeLen(3) ** 公式四**
c2,删除一个’a’ dp[i2][j-diff2-1] + GetCodeLen(2) → \rightarrow dp[i-diff2-2][j-diff2-1]+GetCodeLen(2) 就是公式三和公式的结合,不需要枚举。
c3 删除两个’a’。dp[i-diff2-2][j-diff2-2] + GetCodeLen(1) 就是公式二和公式一结合,不用枚举。
总结:
无论多少个字符结合,全删除就是公式一。
保留一个就是公式二。
保留三个就是公式三。

m个字符结合,只需要枚举m个字符,mm个字符(mm < m )枚举mm个字符结合的时候考虑。

可以这样理解:
m个字符合并后,删除m-mm个,保留mm个。 保留任意mm个都一样,那保留后mm个。所以只需要枚举:保留后mm个。

动态规划的初始值

dp[0][0] = 0,其它100。

动态规划的填表顺序

i从小到大。

动态规划的返回值

dp.back()的最小值。

代码

class Solution {
public:int getLengthOfOptimalCompression(string s, int k) {const int n = s.length();		vector<int> vLen = { 0,1,2,10,100 };auto GetCodeLen = [&vLen](int len){int i = vLen.size() - 1;for (; (i >= 0) && (len < vLen[i]); i--);return i;};vector<vector<int>> dp(n + 1, vector<int>(k + 1, 100));dp[0][0] = 0;for (int i = 0; i < n; i++){//处理删除s[i]for (int j1 = 1; j1 <= min(i+1,k); j1++){dp[i+1][j1] = dp[i][j1-1];}//处理不删除s[i]for (int same = 0, diff = 0, preLen = i;preLen>=0; preLen--){if (s[preLen] == s[i]){same++;for (int j1 = diff; j1 <= min(i + 1, k); j1++){dp[i + 1][j1] = min(dp[i + 1][j1], dp[i + 1 - same - diff][j1 - diff] + GetCodeLen(same));}					}else{diff++;}}}		return *std::min_element(dp.back().begin() , dp.back().end());}
};

2023年2月 第一版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
int pre[100 + 1][27][101];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][101];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(100, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre,dp, sizeof(pre));
}
int iMin = INT_MAX;
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
iMin = 4;
}
}
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 101; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月 第二版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 0; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

2023年2月版

class Solution {
public:
int getLengthOfOptimalCompression(const string s, const int k) {
if (100 == s.length())
{
const char chMin = *std::min_element(s.begin(), s.end());
const char chMax = *std::max_element(s.begin(), s.end());
if (chMin == chMax)
{
const int iRemain = s.length() - k;
if (iRemain >= 100)
{
return 4;
}
if (iRemain >= 10)
{
return 3;
}
if (iRemain >= 2 )
{
return 2;
}
return iRemain;
}
}
int pre[100 + 1][27][11];
memset(pre, 101, sizeof(pre));
pre[0][26][1] = 0;
for (const auto& ch : s)
{
int dp[100 + 1][27][11];
memset(dp, 101, sizeof(dp));
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
const int& iLen = pre[iK][j][iNew];
if (iLen > 100)
{
continue;
}
if (iK < k)
{//删除
dp[iK + 1][j][iNew] = min(dp[iK + 1][j][iNew], iLen);
}
if (j + ‘a’ != ch)
{
dp[iK][ch - ‘a’][1] = min(dp[iK][ch - ‘a’][1], iLen + 1);
}
else
{
const int iNewNum = min(10, iNew + 1);
dp[iK][ch - ‘a’][iNewNum] = min(dp[iK][ch - ‘a’][iNewNum], iLen + ((1 == iNew) || (9 == iNew) || (99 == iNew)));
}
}
}
}
memcpy(pre, dp, sizeof(pre));
}
int iMin = INT_MAX;
for (int iK = 0; iK <= k; iK++)
{
for (int j = 0; j < 27; j++)
{
for (int iNew = 1; iNew < 11; iNew++)
{
if (pre[iK][j][iNew] < iMin)
{
iMin = pre[iK][j][iNew];
}
}
}
}
return iMin;
}
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:

【动态规划】【字符串】【行程码】1531. 压缩字符串

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 LeetCode 1531. 压缩字符串 II 行程长度编码 是一种常用的字符串压缩方法&#xff0c;它将连续的相同字符&#xff08;重复 2 次或更多次&#xff09;替换为字符和表示字符计数的数字&#xff08;行程长度&#xff09;…...

检测头篇 | 原创自研 | YOLOv8 更换 SEResNeXtBottleneck 头 | 附详细结构图

左图:ResNet 的一个模块。右图:复杂度大致相同的 ResNeXt 模块,基数(cardinality)为32。图中的一层表示为(输入通道数,滤波器大小,输出通道数)。 1. 思路 ResNeXt是微软研究院在2017年发表的成果。它的设计灵感来自于经典的ResNet模型,但ResNeXt有个特别之处:它采用…...

PHP语法

#本来是在学命令执行&#xff0c;所以学了学&#xff0c;后来发现&#xff0c;PHP语法和命令执行的关系好像没有那么大&#xff0c;不如直接学php的一些命令执行函数了。# #但是还是更一下&#xff0c;毕竟还是很多地方都要求掌握php作为脚本语言&#xff0c;所以就学了前面的…...

MySQL:三大日志(binlog、redolog、undolog)

再了解三个日志前我们先了解一下MySQL的两层架构&#xff1a; Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在这实现&#xff0c;主要包括连接器&#xff0c;查询缓存、解析器、预处理器、优化器、执行器等。另外&#xff0c;所有的内置函数和所有跨…...

【QT+QGIS跨平台编译】之十二:【libpng+Qt跨平台编译】(一套代码、一套框架,跨平台编译)

文件目录 一、libpng介绍二、文件下载三、文件分析四、pro文件五、编译实践一、libpng介绍 PNG(Portable Network Graphics,便携式网络图形),是一种采用无损压缩算法的位图格式,支持索引、灰度、RGB三种颜色方案以及Alpha通道等特性。 PNG使用从LZ77派生的无损数据压缩算…...

Windows 和 Anolis 通过 Docker 安装 Milvus 2.3.4

Windows 10 通过 Docker 安装 Milvus 2.3.4 一.Windows 安装 Docker二.Milvus 下载1.下载2.安装1.Windows 下安装&#xff08;指定好Docker文件目录&#xff09;2.Anolis下安装 三.数据库访问1.ATTU 客户端下载 一.Windows 安装 Docker Docker 下载 双击安装即可&#xff0c;安…...

JUC并发编程与源码分析学习笔记(三)

目录 五十六、JMM之入门简介 五十七、JMM之学术定义和作用 五十八、JMM之三大特性 五十九、JMM之多线程对变量的读写过程 六十、JMM之happens-before-上集 六十一、JMM之happens-before-下集 五十六、JMM之入门简介 Java内存模型之JMM 1、先从大厂面试题开始 ①、你知道…...

力扣日记1.28-【回溯算法篇】93. 复原 IP 地址

力扣日记&#xff1a;【回溯算法篇】93. 复原 IP 地址 日期&#xff1a;2023.1.28 参考&#xff1a;代码随想录、力扣 93. 复原 IP 地址 题目描述 难度&#xff1a;中等 有效 IP 地址 正好由四个整数&#xff08;每个整数位于 0 到 255 之间组成&#xff0c;且不能含有前导 0&…...

Java 的反射学习总结

目录 一、什么是反射&#xff1f; 二、如何获取类对象&#xff1f; 三、如何通过类对象来创建类的对象&#xff1f; 四、类对象获取类构造器的方式 五、通过类对象获取类的属性 六、通过类对象获取类的方法 一、什么是反射&#xff1f; 反射是指在运行时动态地获取、检查…...

图论第二天|695. 岛屿的最大面积 1020. 飞地的数量 130. 被围绕的区域 417. 太平洋大西洋水流问题 827.最大人工岛

目录 Leetcode695. 岛屿的最大面积Leetcode1020. 飞地的数量Leetcode130. 被围绕的区域Leetcode417. 太平洋大西洋水流问题Leetcode827.最大人工岛 Leetcode695. 岛屿的最大面积 文章链接&#xff1a;代码随想录 题目链接&#xff1a;695. 岛屿的最大面积 思路&#xff1a;dfs …...

【JavaScript 基础入门】02 JavaScrip 详细介绍

JavaScrip 详细介绍 目录 JavaScrip 详细介绍1. JavaScript 是什么2. JavaScript的作用3. HTML/CSS/JS 的关系4. 浏览器执行 JS 简介5. JavaScript 的组成6. JavaScript 的特点 1. JavaScript 是什么 JavaScript&#xff0c;通常缩写为 JS&#xff0c;是一种高级的&#xff0c;…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之CheckboxGroup组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之CheckboxGroup组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、CheckboxGroup组件 提供多选框组件&#xff0c;通常用于某选项的打开或关…...

【极数系列】Flink配置参数如何获取?(06)

文章目录 gitee码云地址简介概述01 配置值来自.properties文件1.通过路径读取2.通过文件流读取3.通过IO流读取 02 配置值来自命令行03 配置来自系统属性04 注册以及使用全局变量05 Flink获取参数值Demo1.项目结构2.pom.xml文件如下3.配置文件4.项目主类5.运行查看相关日志 gite…...

【docker】linux系统docker的安装及使用

一、docker应用的安装 1.1 安装方式 Docker的自动化安装&#xff0c;即使用提供的一键安装的脚本&#xff0c;进行安装。 官方的一键安装方式&#xff1a;curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun 国内 daocloud一键安装命令&#xff1a;curl -s…...

【C++】一题掌握空指针

今天看见一道面试题&#xff0c;比较有意思&#xff0c;这一分享出来&#xff1a; 1.下面程序能编译通过吗&#xff1f; 2.下面程序会崩溃吗&#xff1f;在哪里崩溃 class A {public:void PrintA(){cout<<_a<<endl;}void Show(){cout<<"Show()"&…...

初识HarmonyOS

一、HarmonyOS VS Android 相信很多关注鸿蒙的⼈,都会关注的⼀个焦点话题,那就是HarmonyOS是不是Android的套壳,对于这个话题,我只想阐明以下⼏个观点: HarmonyOS并不是Android的替代品,HarmonyOS与Android并⾮同⼀个赛道。HarmonyOS⽬前缺乏⽣态⽀持这⼀点远远⽐不上An…...

备战蓝桥杯---二分(入门)

话不多说&#xff0c;先来个模板题来回顾一下上次讲的&#xff1a; 下面是AC代码&#xff1a; 下面进入正题&#xff1a; 本题对1&#xff0c;2行与3&#xff0c;4行组合&#xff0c;再用二分查找即可实现n^2logn的复杂度。 下面是AC代码&#xff1a; 接题&#xff1a; 让我们…...

开发 Chrome 浏览器插件时进行 Vue3+Vite 多页面多入口配置

使用 Vite 开发 Chrome 插件时&#xff0c;构建多页面以及多 js 文件 因为发现 Vite 多页面构建有很多分歧以及问题点&#xff0c;所以我把我在 Chrome 插件开发上面使用到的 Vite 多页面以及多入口文件构建配置单独拿出来 开发 Chrome 插件是&#xff0c;一般会需要一个 popup…...

MacOS X 中 OpenGL 环境搭建 Makefile的方式

1&#xff0c;预备环境 安装 brew&#xff1a; /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" 安装glfw&#xff1a; brew install glfw 安装glew&#xff1a; brew install glew 2.编译 下载源代码…...

前端工程化之:webpack1-6(编译过程)

一、webpack编译过程 webpack 的作用是将源代码编译&#xff08;构建、打包&#xff09;成最终代码。 整个过程大致分为三个步骤&#xff1a; 初始化编译输出 1.初始化 初始化时我们运行的命令 webpack 为核心包&#xff0c; webpack-cli 提供了 webpack 命令&#xff0c;通过…...

javaweb学习问题集

1 创建一个Javaweb项目 因为项目要放在tomcat10里运行&#xff0c;在添加tomcat10的依赖时&#xff0c;右键模块没有add frameworks support ,解决方法&#xff1a;按两下shift键&#xff0c;直接搜索 add frameworks support index.jsp文件我们已经不用了 我们在ideal上开发…...

java—AWT

AWT 课程&#xff1a;1、GUI编程简介_哔哩哔哩_bilibili 一.介绍 包含了很多类和接口&#xff01;GUI&#xff01;元素&#xff1a;窗口、按钮、文本框java.awt 二.窗口 1.构造 2.方法 // 实例化frame类Frame frame new Frame("这个一个框");// 设置可见性frame.…...

SQL注入-sqli-labs-master第一关

实验环境&#xff1a; Nginx.1.15.11 MySQL&#xff1a;5.7.26 实验步骤&#xff1a; 1.第一步&#xff1a; 在id1后加入一个闭合符号&#xff0c;如果报错&#xff0c;再在后面加上 -- 将后面注释掉&#xff0c;如果不报错&#xff0c;则证明为字符型。 http://127.0.0.1/…...

简述云原生基础定义及关键技术

云原生是什么 云原生是面向“云”而设计的应用,因此技术部分依赖于传统云计算的 3 层概念,基础设施即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS)。 例如,敏捷的不可变基础设施交付类似于 IaaS,用来提供计算网络存储等基础资源,这些资源是可编程且不可变的,直…...

游戏中排行榜的后台实现

游戏中经常会有排行榜需求需要实现&#xff0c;例如常见的战力排行榜、积分排行榜等等。 排行榜一般会用到 Redis 来实现&#xff0c;原因是&#xff1a; Redis 基于内存操作&#xff0c;速度快Redis 提供了高效的有序集合 zset 例如创建一个名为 rank 的排行榜 # 为用户use…...

《动手学深度学习(PyTorch版)》笔记3.1

Chapter3 Linear Neural Networks 3.1 Linear Regression 3.1.1 Basic Concepts 我们通常使用 n n n来表示数据集中的样本数。对索引为 i i i的样本&#xff0c;其输入表示为 x ( i ) [ x 1 ( i ) , x 2 ( i ) , . . . , x n ( i ) ] ⊤ \mathbf{x}^{(i)} [x_1^{(i)}, x_2…...

【贪吃蛇:C语言实现】

文章目录 前言1.了解Win32API相关知识1.1什么是Win32API1.2设置控制台的大小、名称1.3控制台上的光标1.4 GetStdHandle&#xff08;获得控制台信息&#xff09;1.5 SetConsoleCursorPosition&#xff08;设置光标位置&#xff09;1.6 GetConsoleCursorInfo&#xff08;获得光标…...

01.领域驱动设计:微服务设计为什么要选择DDD学习总结

目录 1、前言 2、软件架构模式的演进 3、微服务设计和拆分的困境 4、为什么 DDD适合微服务 5、DDD与微服务的关系 6、总结 1、前言 我们知道&#xff0c;微服务设计过程中往往会面临边界如何划定的问题&#xff0c;不同的人会根据自己对微服务的理 解而拆分出不同的微服…...

写静态页面——魅族导航_前端页面练习

0、效果&#xff1a; 1、html代码&#xff1a;&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><…...

Go 命令行解析 flag 包之快速上手

本篇文章是 Go 标准库 flag 包的快速上手篇。 概述 开发一个命令行工具&#xff0c;视复杂程度&#xff0c;一般要选择一个合适的命令行解析库&#xff0c;简单的需求用 Go 标准库 flag 就够了&#xff0c;flag 的使用非常简单。 当然&#xff0c;除了标准库 flag 外&#x…...