机器学习:Transformer
Transformer
sequence-to-sequence(seq2seq)
很大语音没有文本,7000种中超半数没有文字。
遇到的问题:
遇到问题时候可以先不管它,先出一个baseline看看效果,后续再进行提升。
tts: 文本转语音,语音合成
目前是两阶段:先用文本转成中文音标,再转成声音信号。
Seq2seq for chatbot
可以将大多数的NLP任务看做是Question Answering任务(QA),QA问题可以用seq2seq解决。定制化的模型比单一模型效果要好一点,但随着大模型的到来,效果可能会越好越好。感兴趣的可以继续学习下面课程。
Seq2seq for syntactic parsing
Seq2seq for Multi-label classification
机器自己决定输出多少个类别。
Seq2seq for object detection
硬解目标检测问题,输入是图像,输出是文本框及类别
–
Seq2seq 基本原理
包含两个部件,编码器encoder和译码器decoder
最早起源于14年,目前成熟结构是transformer结构。
Seq2seq’s Encoder
encoder的作用是将一个向量编码成另外一个向量,有很多部件都能完成该功能,比如self-attention,RNN,CNN,目前流行的是transformer。
block中的过程要更加复杂一点,将block的输出与输入叠加送到下一层,类似于残差结构,然后进行normalizaition,使用的是layer norm, 对每一层计算均值和标准差。
有很多变体:
在transformer中,batch normalization表现没有layer normalization表现好,作者又提出了PowerNorm。
Decoder-Autoregressive(AT)
begin是special token,然后经过softmax得到最大分数的结果“机”, 基于这两个输入输出“器”。以此类推,输入变多,再预测输出。decode的输入是前一个的输出。
中间有可能识别错误导致输出变错,但是会继续往下传下去。
将decoder中间状态遮盖起来后,encoder和decoder是差不多,只是multi-head上面加了mask。
之前的self-attention得到的时候需要考虑所有的信息。现在变成masked-self-attention, 就是不能考虑右边的信息。
为什么要加masked,是计算a2时候不知道a3,a4…,没法考虑右边的信息。
另外不知道输出的正确长度。
增加一个stop token 让其不一直无限推理下去。
Decoder-Non-autoregressive(NAT)
NAT不知道什么时候停,有两种方式:
- 训练一个长度分类器
- 直接输出,如果遇到end就忽略后续的结果
好处就是并行化,能一下子输出结果,比较能够控制输出的长度,但实际应用上一般而言NAT的效果比AT的效果要差,原因是Multi-modality。
Cross attention
encoder和decoder连接,通过cross attention进行连接
kv来自encoder,q来自decoder。
Train
每次decoder产生中文字时候做了一次分类问题。
每一个输出都会有cross entropy,所有的cross entropy的总和最小。
end也会参与计算。
输入的时候是给的正确答案,teacher forcing,正确答案当作decoder的输入。
Tips
Copy Mechanism
- char-bot
- summarization
Guided Attention
可以通过monotonic attention等方式避免上述这种问题。
Beam Search
每次选最大的是贪心的方式,如红色所示;但是如果走绿色的是最优的方式。
可以用beam search方法找到一个不是完全精准的解决方法。
beam search有时候是有用的,有时候是无用的。可以加一些随机性在decoder里面。
tts的时候,decoder中加一点noise,可能效果会变好。模型训练好后,测试的时候也要加noise。
Accept that nothing is perfect, true beauty lies in the cracks of imperfection.
optimizing Evaluation Metrics
blue score不好计算,遇到无法优化的时候,使用reinforcement learning(RL)硬来训练。
给一些错误的输入。
相关文章:

机器学习:Transformer
Transformer sequence-to-sequence(seq2seq) 很大语音没有文本,7000种中超半数没有文字。 遇到的问题: 遇到问题时候可以先不管它,先出一个baseline看看效果,后续再进行提升。 tts: 文本转语音,语音合成…...
pytorch-模型构建,参数访问,模型存取API接口,对比学习
多层感知机的简洁实现pytorch-多层感知机,最简单的深度学习模型,将非线性激活函数引入到模型中。_羞儿的博客-CSDN博客中含单隐藏层的多层感知机的实现方法。首先构造Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256&am…...

javaEE 初阶 — 数据链路层中的以太网数据帧
文章目录以太网帧格式1. MAC 地址2. MAC 地址是如何与 IP 地址相互配合的3. 以太网帧格式中的类型MTU(了解)以太网帧格式 数据链路层主要考虑的是相邻的两个结点之间的传输。 这里最知名的协议就是 以太网。 一个以太网数据帧有三个部分组成。帧头载荷…...

泼辣修图Polarr5.11.4 版,让你的创意无限延伸
泼辣修图是一款非常实用的图片处理软件,它不仅拥有丰富的图片处理功能,而且还能够轻松地实现自定义操作。泼辣修图的操作界面非常简洁,功能也非常丰富,使用起来非常方便快捷。 泼辣修图拥有非常丰富的图片处理功能,包括…...

leetcode打卡-深度优先遍历和广度优先遍历
200.岛屿数量 leetcode题目链接:https://leetcode.cn/problems/number-of-islands leetcode AC记录: 思路:深度优先遍历,从0,0开始遍历数组,使用boolean类型数组used记录是否被访问过,进行一…...
【0177】Linux中POSIX信号量实现机制
文章目录 1. 信号量概念1.1 信号量类比1.2 重要的观察1.3 信号量分类2. POSIX与System V信号量3. 信号量API4. 代码演示5. 信号量内核实现1. 信号量概念 在计算机科学中,信号量(semaphores )是一种变量或抽象数据类型,用于控制多个进程对公共资源的访问,并避免并发系统(如…...

跳表--C++实现
目录 作者有话说 为何要学习跳表?为了快,为了更快,为了折磨自己..... 跳表作用场景 1.不少公司自己会设计哈希表,如果解决哈希冲突是不可避免的事情。通常情况下会使用链址,很好理解,当有冲突产生时&#…...
c#:System.Text.Json 的使用一
环境: .net 6.0vs2022 参考: 从 Newtonsoft.Json 迁移到 System.Text.Json System.Text.Json 常规用法 一、写入时的控制 1.1 非ascii码转换 直接看代码: var str System.Text.Json.JsonSerializer.Serialize(new Model { Id 1, Name …...

kaggle数据集下载当中所遇到的问题
kaggle数据集下载当中所遇到的问题报错分析pip install kagglethe SSL module is not available解决方法pip的版本升级解决办法下载kaggle包kaggle数据集下载问题解决参考内容报错分析 今天在尝试使用pip install kaggle的方法去下载我需要的数据集的时候遇到了一些报错的问题…...
TEX:高阶用法
文章目录定制LATEX记数器创建记数器改变记数器的值显示记数器的值长度橡皮长度用户定义命令用户定义的环境标题定制正文中标题设置使用titlesec宏包设置标题格式目录中标题设置LATEX 2ε\varepsilonε程序设计语言命令的层次文件识别上载其他类和宏包输入文件检测文件选项的处理…...

UML 类图
车的类图结构为<>,表示车是一个抽象类; 它有两个继承类:小汽车和自行车;它们之间的关系为实现关系,使用带空心箭头的虚线表示; 小汽车为与SUV之间也是继承关系,它们之间的关系为泛化关系…...

项目实战典型案例1——redis只管存不管删除 让失效时间删除的问题
redis只管存不管删除 让失效时间删除的问题一:背景介绍二:思路&方案三:代码模拟1.错误示范通过班级id查询课程名称执行结果通过班级id修改课程名称(并没有删除对应缓存)执行结果2.正确示范在错误示范的更新接口上添…...

@RequestParam和@PathVariable的用法与区别
PathVariable PathVariable 映射 URL 绑定的占位符带占位符的 URL 是 Spring3.0 新增的功能,该功能在SpringMVC 向 REST 目标挺进发展过程中具有里程碑的意义通过 PathVariable 可以将 URL 中占位符参数绑定到控制器处理方法的入参中:URL 中的 {xxx} 占…...

【大数据 AI 人工智能】数据科学家必学的 9 个核心机器学习算法
如今,机器学习正改变着我们的世界。借助机器学习(ML),谷歌在为我们推荐搜索结果,奈飞在为我们推荐观看影片,脸书在为我们推荐可能认识的朋友。 机器学习从未像在今天这样重要。但与此同时,机器学习这一领域也充斥着各种术语,晦涩难懂,各种机器学习的算法每年层出不穷…...

IronPDF for .NET 2023.2.4 Crack
适用于 .NET 2023.2.4 的 IronPDF 添加对增量 PDF 保存的支持。 2023 年 3 月 2 日 - 10:23新版本 特征 添加了对 IronPdfEngine Docker 的支持。 添加了对增量 PDF 保存的支持。 重新设计了 PDF 签名和签名。 删除了 iTextSharp 依赖项。 在文本页眉/页脚中添加了 DrawDivider…...
3.4-前端的10个问题
01、null和undefined undefined是全局对象的一个属性,当一个变量没有赋值或者访问一个对象不存在的属性,这时候都是undefined。 null:表示是一个空对象。在需要释放一个对象的时候,直接赋值为null即可。 02、箭头函数 箭头函数…...
开发手册——一、编程规约_9.其他
这篇文章主要梳理了在java的实际开发过程中的编程规范问题。本篇文章主要借鉴于《阿里巴巴java开发手册终极版》 下面我们一起来看一下吧。 1. 【强制】在使用正则表达式时,利用好其预编译功能,可以有效加快正则匹配速度。 说明:不要在方法…...

23.3.4打卡 AtCoder Beginner Contest 291(Sponsored by TOYOTA SYSTEMS)A~E
F题题面都看不懂嘞!开摆! 没找到合适的markdown, 截图网页翻译了我真是天才 比赛链接: https://atcoder.jp/contests/abc291 A题 题意 给出一个字符串, 找到第一个大写字母的下标 简单题就不多说了, 直接放代码 代码 void solve() {cin>>str;nstr.size();str"…...

Gem5模拟器,一些运行的小tips(十一)
一些基础知识,下面提到的东西与前面的文章有一定的关系,感兴趣的小伙伴可以看一下: (21条消息) Gem5模拟器,全流程运行Chiplet-Gem5-SharedMemory-main(十)_好啊啊啊啊的博客-CSDN博客 Gem5模拟器…...

【JAVA】List接口
🏆今日学习目标:List接口 😃创作者:颜颜yan_ ✨个人主页:颜颜yan_的个人主页 ⏰本期期数:第四期 🎉专栏系列:JAVA List接口一、ArrayList二、LinkedList总结一、ArrayList ArrayLis…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
在Ubuntu中设置开机自动运行(sudo)指令的指南
在Ubuntu系统中,有时需要在系统启动时自动执行某些命令,特别是需要 sudo权限的指令。为了实现这一功能,可以使用多种方法,包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法,并提供…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...

云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...

6.9-QT模拟计算器
源码: 头文件: widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QMouseEvent>QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr);…...

生信服务器 | 做生信为什么推荐使用Linux服务器?
原文链接:生信服务器 | 做生信为什么推荐使用Linux服务器? 一、 做生信为什么推荐使用服务器? 大家好,我是小杜。在做生信分析的同学,或是将接触学习生信分析的同学,<font style"color:rgb(53, 1…...