当前位置: 首页 > news >正文

​ PaddleHub 首页图像 - 文字识别chinese_ocr_db_crnn_server​

PaddleHub

便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用

零基础快速开始WindowsLinuxMac

 PaddleHub 首页图像 - 文字识别chinese_ocr_db_crnn_server

chinese_ocr_db_crnn_server

类别图像 - 文字识别

网络Differentiable Binarization+CRNN

数据集icdar2015数据集

模型概述

chinese_ocr_db_crnn_server Module用于识别图片当中的汉字。其基于chinese_text_detection_db_server检测得到的文本框,继续识别文本框中的中文文字。之后对检测文本框进行角度分类。最终识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积递归神经网络。其是DCNN和RNN的组合,专门用于识别图像中的序列式对象。与CTC loss配合使用,进行文字识别,可以直接从文本词级或行级的标注中学习,不需要详细的字符级的标注。该Module是一个通用的OCR模型,支持直接预测。

选择模型版本进行安装

1.2.0 (最新版)

$ hub install chinese_ocr_db_crnn_server==1.2.0

chinese_ocr_db_crnn_server

模型名称chinese_ocr_db_crnn_server
类别图像-文字识别
网络Differentiable Binarization+RCNN
数据集icdar2015数据集
是否支持Fine-tuning
模型大小116MB
最新更新日期2021-05-31
数据指标mAP@0.98

一、模型基本信息

  • 应用效果展示

    • OCR文字识别场景在线体验
    • 样例结果示例:

  • 模型介绍

    • chinese_ocr_db_crnn_server Module用于识别图片当中的汉字。其基于chinese_text_detection_db_server Module 检测得到的文本框,识别文本框中的中文文字。识别文字算法采用CRNN(Convolutional Recurrent Neural Network)即卷积循环神经网络。该Module是一个通用的OCR模型,支持直接预测。

  • 更多详情参考:An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition

二、安装

  • 1、环境依赖

    • paddlepaddle >= 2.2.0

    • paddlehub >=2.2.0

    • shapely

    • pyclipper

    • $ pip install shapely pyclipper
    • 该Module依赖于第三方库shapely和pyclipper,使用该Module之前,请先安装shapely和pyclipper。
  • 2、安装

    • $ hub install chinese_ocr_db_crnn_server

三、模型API预测

  • 1、命令行预测

    • $ hub run chinese_ocr_db_crnn_server --input_path "/PATH/TO/IMAGE"
  • 2、预测代码示例

    • import paddlehub as hub
      import cv2ocr = hub.Module(name="chinese_ocr_db_crnn_server", enable_mkldnn=True)       # mkldnn加速仅在CPU下有效
      result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])# or
      # result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
  • 3、API

    • def __init__(text_detector_module=None, enable_mkldnn=False)
      • 构造ChineseOCRDBCRNNServer对象

      • 参数

        • text_detector_module(str): 文字检测PaddleHub Module名字,如设置为None,则默认使用 chinese_text_detection_db_server Module。其作用为检测图片当中的文本。
        • enable_mkldnn(bool): 是否开启mkldnn加速CPU计算。该参数仅在CPU运行下设置有效。默认为False。
    • def recognize_text(images=[],paths=[],use_gpu=False,output_dir='ocr_result',visualization=False,box_thresh=0.5,text_thresh=0.5,angle_classification_thresh=0.9)
      • 预测API,检测输入图片中的所有中文文本的位置。

      • 参数

        • paths (list[str]): 图片的路径;
        • images (list[numpy.ndarray]): 图片数据,ndarray.shape 为 [H, W, C],BGR格式;
        • use_gpu (bool): 是否使用 GPU;若使用GPU,请先设置CUDA_VISIBLE_DEVICES环境变量
        • box_thresh (float): 检测文本框置信度的阈值;
        • text_thresh (float): 识别中文文本置信度的阈值;
        • angle_classification_thresh(float): 文本角度分类置信度的阈值
        • visualization (bool): 是否将识别结果保存为图片文件;
        • output_dir (str): 图片的保存路径,默认设为 ocr_result;
      • 返回

        • res (list[dict]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
          • data (list[dict]): 识别文本结果,列表中每一个元素为 dict,各字段为: - text(str): 识别得到的文本 - confidence(float): 识别文本结果置信度 - text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标 如果无识别结果则data为[]
          • save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''

四、服务部署

  • PaddleHub Serving 可以部署一个目标检测的在线服务。

  • 第一步:启动PaddleHub Serving

    • 运行启动命令:
    • $ hub serving start -m chinese_ocr_db_crnn_server
    • 这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。

    • NOTE: 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。

  • 第二步:发送预测请求

    • 配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果

    • import requests
      import json
      import cv2
      import base64def cv2_to_base64(image):data = cv2.imencode('.jpg', image)[1]return base64.b64encode(data.tostring()).decode('utf8')# 发送HTTP请求
      data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
      headers = {"Content-type": "application/json"}
      url = "http://127.0.0.1:8866/predict/chinese_ocr_db_crnn_server"
      r = requests.post(url=url, headers=headers, data=json.dumps(data))# 打印预测结果
      print(r.json()["results"])
  • Gradio App 支持

    从 PaddleHub 2.3.1 开始支持使用链接 http://127.0.0.1:8866/gradio/chinese_ocr_db_crnn_server 在浏览器中访问 chinese_ocr_db_crnn_server 的 Gradio App。

五、更新历史

  • 1.0.0

    初始发布

  • 1.0.1

    支持mkldnn加速CPU计算

  • 1.1.0

    使用三阶段模型(文本框检测-角度分类-文字识别)识别图片文字。

  • 1.1.1

    支持文本中空格识别。

  • 1.1.2

    修复检出字段无法超过30个问题。

  • 1.1.3

    移除 fluid api

  • 1.2.0

    添加 Gradio APP

相关文章:

​ PaddleHub 首页图像 - 文字识别chinese_ocr_db_crnn_server​

PaddleHub 便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用 零基础快速开始WindowsLinuxMac Paddle…...

如何在Win系统安装Jupyter Notbook并实现无公网ip远程访问本地笔记

文章目录 1.前言2.Jupyter Notebook的安装2.1 Jupyter Notebook下载安装2.2 Jupyter Notebook的配置2.3 Cpolar下载安装 3.Cpolar端口设置3.1 Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 在数据分析工作中,使用最多的无疑就是各种函数、图表、…...

腾讯云轻量应用Windows服务器如何搭建幻兽帕鲁Palworld私服?

幻兽帕鲁/Palworld是一款2024年Pocketpair开发的开放世界生存制作游戏,在帕鲁的世界,玩家可以选择与神奇的生物“帕鲁”一同享受悠闲的生活,也可以投身于与偷猎者进行生死搏斗的冒险。而帕鲁可以进行战斗、繁殖、协助玩家做农活,也…...

AR眼镜_ar智能眼镜显示方案|光学方案

AR眼镜是一种智能眼镜,能够将虚拟现实和现实世界相结合,使人们能够在日常生活中体验和参与虚拟现实。然而,AR智能眼镜的制造成本高,开发周期长。要实现AR眼镜的各项功能,需要良好的硬件条件,而AR智能眼镜的…...

C语言之猜凶手

一、题目 日本某地发生了一件谋杀案,警察通过排查确定杀人凶手必为4个嫌疑犯的一个。 以下为4个嫌疑犯的供词: A说:不是我。B说:是C。C说:是D。D说:C在胡说 已知3个人说了真话,1个人说的是假话。 现在…...

#Uniapp: uni.previewImage(OBJECT) 预览图片

uni.previewImage(OBJECT) 预览图片。 api地址 媒体-图片 示例 handlePreviewImg(current) {const urls this.rightList.map(x > x.icon)uni.previewImage({urls,current})}OBJECT 参数说明 参数名类型必填说明平台差异说明countNumber否最多可以选择的图片张数&#…...

SpringCloud-高级篇(十六)

前面学习了Lua的语法,就可以在nginx去做编程,去实现nginx类里面的业务,查询Redis,查询tomcat等 ,业务逻辑的编写依赖于其他组件,这些组件会用到OpenResty的工具去实现 (1)安装OpenRe…...

【C++基础】C++内存处理机制面试题(以面促学 )

🌈欢迎来到C基础专栏 🙋🏾‍♀️作者介绍:前PLA队员 目前是一名普通本科大三的软件工程专业学生 🌏IP坐标:湖北武汉 🍉 目前技术栈:C/C、Linux系统编程、计算机网络、数据结构、Mysq…...

arcgis 批量删除字段

一、打开ArcToolbox-数据管理工具-字段-删除字段。 二、在输入表中选择要删除字段的要素,在删除字段栏中选择要删除的字段,点击确认即可。...

尚无忧球馆助教系统源码,助教小程序源码,助教源码,陪练系统源码

特色功能: 不同助教服务类型选择 助教申请,接单,陪练师入住,赚取外快 线下场馆入住 设置自己服务 城市代理 分销商入住 优惠券 技术栈:前端uniapp后端thinkphp 独立全开源...

Spring-集成Junit

一、引子 我们在Spring概念中提到:Spring的一大优势在于可以集成众多优秀的框架。毫无疑问,我首先向读者推荐的就是Junti框架。因为我们在前期的学习中,写一些小的demo,用Junit来进行小测试是非常合适的。下面让我们来具体看看如…...

DS:经典算法OJ题(1)

创作不易,友友们给个三连呗!! 本文为经典算法OJ题练习,大部分题型都有多种思路,每种思路的解法博主都试过了(去网站那里验证)是正确的,大家可以参考!! 一、移…...

最好理解文章——什么是闭包?

学习Javascript闭包(Closure) 闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。 一、变量的作用域 要理解闭包,首先必须理解Javascript特殊的变量作用…...

Git 教程 | 将本地修改后的文件推送到 Github 指定远程分支上

Git 是一种分布式版本控制系统,用于敏捷高效地处理任何大小的项目。它是由 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的开源版本控制软件。Git 的本地克隆就是一个完整的版本控制存储库,无论脱机还是远程都能轻松工作。开发人员会在本地提交其工…...

漏洞原理linux操作系统的SqlMap工具的使用

漏洞原理linux操作系统的SqlMap工具的使用 Linux操作系统基础操作链接: 1024一篇通俗易懂的liunx命令操作总结(第十课)-CSDN博客 kali的IP地址:192.168.56.1 实操 # kali中使用sqlmap http://192.168.56.1/ sqlmap -u http://192.168.56.1/news/show.php?id46 sqlmap -u …...

【机器学习】欠拟合与过拟合

过拟合:模型在训练数据上表现良好对不可见数据的泛化能力差。 欠拟合:模型在训练数据和不可见数据上泛化能力都很差。 欠拟合常见解决办法: (1)增加新特征,可以考虑加入特征组合、高次特征,以…...

【C++】C++入门基础讲解(二)

💗个人主页💗 ⭐个人专栏——C学习⭐ 💫点击关注🤩一起学习C语言💯💫 导读 接着上一篇的内容继续学习,今天我们需要重点学习引用。 1. 引用 在C中,引用是一种特殊的变量&#xff…...

Requestly工具快速提升前端开发与测试的效率

痛点 前端测试 在进行前端页面开发或者测试的时候,我们会遇到这一类场景: 在开发阶段,前端想通过调用真实的接口返回响应在开发或者生产阶段需要验证前端页面的一些 异常场景 或者 临界值 时在测试阶段,想直接通过修改接口响应来…...

Node+Express写分页接口

后端逻辑 router.js文件 const express require(express); const router express.Router();//导入函数处理,数据 const articleMessage require(../router_handle/artcle)//文章列表 router.get(/list,articleMessage.articleList)module.exports router; router_handle.js…...

ifconfig 主机ip url记录

ifconfig 容器Pods相关主机与url信息 一文搞懂网络知识,IP、子网掩码、网关、DNS、端口号_关于ip,网关。端口-CSDN博客 计算机网络知识之URL、IP、子网掩码、端口号_ip地址和url-CSDN博客 阅读看下以上文章 由此可知 1.主机ip 10.129.22.124 10.129.22 是网段…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接,私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放

简介 前面两期文章我们介绍了I2S的读取和写入&#xff0c;一个是通过INMP441麦克风模块采集音频&#xff0c;一个是通过PCM5102A模块播放音频&#xff0c;那如果我们将两者结合起来&#xff0c;将麦克风采集到的音频通过PCM5102A播放&#xff0c;是不是就可以做一个扩音器了呢…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...