当前位置: 首页 > news >正文

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

目录

    • 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测(完整源码和数据)
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测

回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测 目录 回归预测 | Matlab实现CPO-LSSVM【24年新算法】冠豪猪优化最小二乘支持向量机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现CPO-LSSVM【24年…...

SeaTunnel Web安装 一把成

安装相关jar包,以及SeaTunnel 和Web 打成的包,可以直接使用,但是需要安装MySQL客户端的分享: 链接:https://pan.baidu.com/s/1qrt1RAX38SgIpNklbQJ7pA 提取码:0kmf 1. 环境准备 环境名称版本系统环境C…...

对话泛能网程路:能源产业互联网,行至中程

泛能网的能源产业互联网的标杆价值还不仅于此。其在产业互联之外,也更大的特殊性在于其也更在成为整个碳市场的“辅助运营商”,包括电力、碳等一系列被泛能网帮助企业改造和沉淀的要素资产,都在构成着碳交易市场的未来底层。 这恰是产业互联…...

Doris简介及单机部署(超详细)

文章目录 一、Doris简介1、Doris介绍2、Doris架构 二、Doris单机部署(Centos7.9)1、下载Doris2、准备环境3、安装部署3.1 创建存储目录3.2 配置 FE3.3 启动 FE3.4 查看 FE 运行状态3.5 配置 BE3.6 启动 BE3.7 添加 BE 节点到集群3.8 查看 BE 运行状态3.9…...

Pytest 识别case规则

一、Python测试框架,主要特点有以下几点: 简单灵活,容易上手;支持参数化;能够支持简单的单元测试和复杂的功能测试,还可以用来做selenium/appnium等自动化测试、接口自动化测试(pytestrequests…...

gorm+mysql查询/修改json列相关操作汇总

目录 具体操作 1,查询JSON段落指定key的值是否有等于value的 或 指定keyvalue的数据记录 2,查询JSON段落中price>19的记录 3,查询JSON段中key为k0的记录 4、JSON段落中提取指定键值对到指定结构 5,查询JSON数组是否包含…...

CMake-Cookbook 第0章 配置环境

文章目录 第0章 配置环境0.1 获取代码0.2 Docker镜像0.3 安装必要的软件0.3.1 获取CMake0.3.2 编译器0.3.3 自动化构建工具0.3.4 Python0.3.5 依赖软件0.3.5.1 BLAS和LAPACk0.3.5.2 消息传递接口(MPI)0.3.5.3 线性代数模板库0.3.5.4 Boost库0.3.5.5 交叉编译器0.3.5.6 ZeroMQ, …...

优质硬盘检测工具SMART Utility,保障您的Mac数据安全

在日常使用Mac电脑的过程中,我们经常会存储大量的重要数据,如照片、文档、视频等。然而,硬盘故障却是一件令人头疼的事情,可能会导致数据丢失、系统崩溃等严重后果。为了保障您的数据安全,我们推荐一款专业的硬盘检测工…...

Spring: alibaba代码规范校验工具checkstyle

文章目录 一、idea配置checkstyle插件二、激活CheckStyle三、配置自动格式化功能四、使用代码格式化 一、idea配置checkstyle插件 下载 Intellij IDEA Checkstyle 插件:File -> setting -> plugin通过关键字CheckStyle-IDEA搜索并安装。 安裝完成后重启idea…...

c++线程thread示例

本文章记录c创建线程&#xff0c;启动线程和结束线程的代码。 需要注意&#xff0c;编译时需要添加-lpthread依赖。 代码&#xff1a; ThreadTest.h #ifndef TEST_THREAD_TEST_H #define TEST_THREAD_TEST_H#include <thread> #include <mutex>class ThreadTes…...

Compose | UI组件(十一) | Spacer - 留白

文章目录 前言Spacer组件的参数说明Spacer组件的使用 总结 前言 Spacer组件是让两组件之间留有空白间隔 Spacer组件的参数说明 Spacer只有一个修饰符&#xff0c;修饰留空白的大小和比例&#xff0c;颜色 Spacer(modifier: Modifier)Spacer组件的使用 Row {Box(modifier M…...

PyTorch的nn.Module类的详细介绍

在PyTorch中&#xff0c;nn.Module 类是构建神经网络模型的基础类&#xff0c;所有自定义的层、模块或整个神经网络架构都需要继承自这个类。nn.Module 类提供了一系列属性和方法用于管理网络的结构和训练过程中的计算。 1. PyTorch中nn.Module基类的定义 在PyTorch中&#xff…...

python使用activemq库ActiveMQClient类的连接activemq并订阅、发送和接收消息

引入activemq模块&#xff1a;from activemq import ActiveMQClient from activemq import ActiveMQClient 是一个Python的导入语句&#xff0c;它从activemq模块中导入了ActiveMQClient类。 解释一下各个部分&#xff1a; from activemq: 这表示我们正在从一个名为activemq…...

【Flutter 面试题】Dart是什么?Dart和Flutter有什么关系?

【Flutter 面试题】Dart是什么&#xff1f;Dart和Flutter有什么关系&#xff1f; 文章目录 写在前面Dart是什么Dart和Flutter有什么关系&#xff1f; 写在前面 &#x1f44f;&#x1f3fb; 正在学 Flutter 的同学&#xff0c;你好&#xff01; &#x1f60a; 本专栏是解决 Fl…...

前后台分离跨域交互

后台处理跨域 安装插件 >: pip install django-cors-headers插件参考地址&#xff1a;https://github.com/ottoyiu/django-cors-headers/项目配置&#xff1a;dev.py # 注册app INSTALLED_APPS [...corsheaders, ]# 添加中间件 MIDDLEWARE [...corsheaders.middleware.…...

React16源码: React中处理LegacyContext相关的源码实现

LegacyContext 老的 contextAPI 也就是我们使用 childContextTypes 这种声明方式来从父节点为它的子树提供 context 内容的这么一种方式遗留的contextAPI 在 react 17 被彻底移除了&#xff0c;就无法使用了那么为什么要彻底移除这个contextAPI的使用方式呢&#xff1f;因为它…...

Boost.Test资源及示例

Note&#xff1a;boost_1_84_0的动态连接库资源链接 1.代码组织如下图&#xff1a; 2.包括程序入口的代码文件 示例&#xff1a; // M24.01.MyTestModule.cpp : 定义控制台应用程序的入口点。 //#include "stdafx.h" #define BOOST_TEST_MODULE MYTESTMODULE #def…...

数据结构二叉树

二叉树是数据结构中的一个基本概念&#xff0c;它是每个节点最多有两个子节点的树结构。在二叉树中&#xff0c;每个节点通常有两个指针&#xff0c;分别指向左子节点和右子节点。 数据结构定义 在二叉树的节点中&#xff0c;通常包含以下信息&#xff1a; 数据域&#xff1…...

JavaScript继承与原型链

继承和原型链是什么&#xff1f; 1.1 在继承中&#xff0c;子类继承父类的特征和行为&#xff0c;使得子类对象具有父类的实例域和方法。这意味着子类可以使用父类的方法和属性&#xff0c;使用继承的目的是为了更好设置实例的公共属性和方法&#xff0c;如下例子&#xff1a; …...

SouthLeetCode-打卡24年01月第4周

SouthLeetCode-打卡24年01月第4周 // Date : 2024/01/22 ~ 2024/01/28 022.设计链表 - 双链表 (1) 题目描述 022#LeetCode.707.#北岸计划2024/01/22 (2) 题解代码 import java.util.List;class ListNode {int val;ListNode prev;ListNode next;ListNode(){this.val 0;th…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈

在日常iOS开发过程中&#xff0c;性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期&#xff0c;开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发&#xff0c;但背后往往隐藏着系统资源调度不当…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...