机器学习模型预测贷款审批
机器学习模型预测贷款审批
作者:i阿极
作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持
专栏案例:机器学习案例 |
---|
机器学习(一):线性回归之最小二乘法 |
机器学习(二):线性回归之梯度下降法 |
机器学习(三):基于线性回归对波士顿房价预测 |
机器学习(四):基于KNN算法对鸢尾花类别进行分类预测 |
机器学习(五):基于KNN模型对高炉发电量进行回归预测分析 |
机器学习(六):基于高斯贝叶斯对面部皮肤进行预测分析 |
机器学习(七):基于多项式贝叶斯对蘑菇毒性分类预测分析 |
机器学习(八):基于PCA对人脸识别数据降维并建立KNN模型检验 |
机器学习(十四):基于逻辑回归对超市销售活动预测分析 |
机器学习(十五):基于神经网络对用户评论情感分析预测 |
机器学习(十六):线性回归分析女性身高与体重之间的关系 |
机器学习(十七):基于支持向量机(SVM)进行人脸识别预测 |
机器学习(十八):基于逻辑回归对优惠券使用情况预测分析 |
机器学习(十九):基于逻辑回归对某银行客户违约预测分析 |
机器学习(二十):LightGBM算法原理(附案例实战) |
机器学习(二十一):基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测 |
机器学习(二十二):基于逻辑回归(Logistic Regression)对股票客户流失预测分析 |
文章目录
- 机器学习模型预测贷款审批
- 1、前言
- 2、导入库和数据集
- 3、数据预处理和可视化
- 4、分割数据集
- 5、模型训练与评估
- 总结
1、前言
贷款是现代世界的主要需求。仅此一点,银行就获得了总利润的主要部分。它有利于学生管理他们的教育和生活费用,也有利于人们购买任何类型的奢侈品,如房子、汽车等。
但在决定申请人的个人资料是否与获得贷款相关时。银行必须照顾很多方面。
因此,在这里我们将使用Python机器学习来简化他们的工作,并使用婚姻状况、教育、申请人收入、信用记录等关键特征来预测候选人的个人资料是否相关。
该数据集包含 13 个特征:
1 | 贷款 | 唯一的ID |
---|---|---|
2 | 性别 | 申请人性别 男/女 |
3 | 已婚 | 申请人的婚姻状况,值为是/否 |
4 | 家属 | 它告诉申请人是否有任何家属。 |
5 | 教育 | 它将告诉我们申请人是否已毕业。 |
6 | 自雇 | 这定义了申请人是自营职业者,即是/否 |
7 | 申请人收入 | 申请人收入 |
8 | 共同申请人收入 | 共同申请人的收入 |
9 | 贷款额度 | 贷款金额(万) |
10 | 贷款金额_期限 | 贷款期限(月) |
11 | 信用_历史 | 个人还款信用记录 |
12 | 物业_面积 | 房产面积,即农村/城市/半城市 |
13 | 贷款状态 | 贷款状态是否已批准,即 Y- 是、N- 否 |
2、导入库和数据集
首先我们必须导入库:
Pandas – 加载数据框
Matplotlib – 可视化数据特征,即条形图
Seaborn – 使用热图查看特征之间的相关性
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns data = pd.read_csv("LoanApprovalPrediction.csv")
导入数据集后,让我们使用以下命令查看它。
data.head(5)
3、数据预处理和可视化
获取对象数据类型的列数。
obj = (data.dtypes == 'object')
print("Categorical variables:",len(list(obj[obj].index)))
由于 Loan_ID 是完全唯一的,并且与任何其他列都不相关,因此我们将使用 删除它。drop()函数。
data.drop(['Loan_ID'],axis=1,inplace=True)
使用barplot可视化列中的所有唯一值。这将简单地显示根据我们的数据集哪个值占主导地位。
obj = (data.dtypes == 'object')
object_cols = list(obj[obj].index)
plt.figure(figsize=(18,36))
index = 1for col in object_cols: y = data[col].value_counts() plt.subplot(11,4,index) plt.xticks(rotation=90) sns.barplot(x=list(y.index), y=y) index +=1
由于所有分类值都是二进制的,因此我们可以对所有此类列使用标签编码器,并且这些值将更改为int数据类型。
from sklearn import preprocessing label_encoder = preprocessing.LabelEncoder()
obj = (data.dtypes == 'object')
for col in list(obj[obj].index): data[col] = label_encoder.fit_transform(data[col])
再次检查对象数据类型列。让我们看看是否还有剩余。
obj = (data.dtypes == 'object')
print("Categorical variables:",len(list(obj[obj].index)))
使用热力图显示了贷款金额和申请人收入之间的相关性。
plt.figure(figsize=(12,6)) sns.heatmap(data.corr(),cmap='BrBG',fmt='.2f', linewidths=2,annot=True)
明 Credit_History 对 Loan_Status 有很大影响。
现在我们将使用Catplot可视化申请人的性别和婚姻状况图。
sns.catplot(x="Gender", y="Married", hue="Loan_Status", kind="bar", data=data)
现在我们将使用以下代码找出数据集中是否存在缺失值。
for col in data.columns: data[col] = data[col].fillna(data[col].mean()) data.isna().sum()
由于没有缺失值,那么我们必须继续进行模型训练。
4、分割数据集
from sklearn.model_selection import train_test_split X = data.drop(['Loan_Status'],axis=1)
Y = data['Loan_Status']
X.shape,Y.shape X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.4, random_state=1)
X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
((358, 11), (240, 11), (358,), (240,))
5、模型训练与评估
由于这是一个分类问题,因此我们将使用这些模型:
K邻居分类器
随机森林分类器
支持向量分类器 (SVC)
逻辑回归
为了预测准确性,我们将使用scikit-learn库中的准确性评分函数。
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression from sklearn import metrics knn = KNeighborsClassifier(n_neighbors=3)
rfc = RandomForestClassifier(n_estimators = 7, criterion = 'entropy', random_state =7)
svc = SVC()
lc = LogisticRegression() for clf in (rfc, knn, svc,lc): clf.fit(X_train, Y_train) Y_pred = clf.predict(X_train) print("Accuracy score of ", clf.__class__.__name__, "=",100*metrics.accuracy_score(Y_train, Y_pred))
输出:
Accuracy score of RandomForestClassifier = 98.04469273743017
Accuracy score of KNeighborsClassifier = 78.49162011173185
Accuracy score of SVC = 68.71508379888269
Accuracy score of LogisticRegression = 80.44692737430168
对测试集的预测:
for clf in (rfc, knn, svc,lc): clf.fit(X_train, Y_train) Y_pred = clf.predict(X_test) print("Accuracy score of ", clf.__class__.__name__,"=", 100*metrics.accuracy_score(Y_test, Y_pred))
输出:
Accuracy score of RandomForestClassifier = 82.5
Accuracy score of KNeighborsClassifier = 63.74999999999999
Accuracy score of SVC = 69.16666666666667
Accuracy score of LogisticRegression = 80.83333333333333
随机森林分类器给出了最好的准确度,测试数据集的准确度得分为 82.5%。为了获得更好的结果,还可以使用Bagging和Boosting等集成学习技术。
总结
在这里我们将使用Python机器学习来简化他们的工作,并使用婚姻状况、教育、申请人收入、信用记录等关键特征来预测候选人的个人资料是否相关。
不要错过驾驭数据革命浪潮的机会!每个行业都在利用数据的力量来攀登新的高度。磨练你的技能,成为 21 世纪最热门趋势的一部分。
📢文章下方有交流学习区!一起学习进步!💪💪💪
📢首发CSDN博客,创作不易,如果觉得文章不错,可以点赞👍收藏📁评论📒
📢你的支持和鼓励是我创作的动力❗❗❗
相关文章:

机器学习模型预测贷款审批
机器学习模型预测贷款审批 作者:i阿极 作者简介:数据分析领域优质创作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论&…...

Linux实验记录:使用firewalld
前言: 本文是一篇关于Linux系统初学者的实验记录。 参考书籍:《Linux就该这么学》 实验环境: VmwareWorkStation 17——虚拟机软件 RedHatEnterpriseLinux[RHEL]8——红帽操作系统 备注: RHEL8系统中集成了多款防火墙管理工具…...

Vue之初识Vue CLI 脚手架
Vue CLI 是Vue 官方提供的一个全局命令工具 可以帮助我们快速创建一个开发Vue项目的标准化基础架子。【集成了webpack配置】 脚手架有什么好处? 1.开箱即用,零配置 2.内置 babel 等工具 3.标准化 使用步骤: 1.全局安装(一次):yarn globaladd vue/cli …...

[Tcpdump] 网络抓包工具使用教程
往期回顾 海思 tcpdump 移植开发详解海思 tcpdump 移植开发详解 前言 上一节,我们已经讲解了在海思平台如何基于静态库生成 tcpdump 工具,本节将作为上一节的拓展内容。 一、tcpdump 简介 「 tcpdump 」是一款强大的网络抓包工具,它基于…...

MongoDB常用命令
3.1 案例需求 存放文章评论的数据存放到MongoDB中,数据结构参考如下: 数据库:articledb 3.2 数据库操作 3.2.1 选择和创建数据库 选择和创建数据库的语法格式: use 数据库名称 如果数据库不存在则自动创建,例如&a…...

强敌环伺:金融业信息安全威胁分析——整体态势
从早期的Zeus和其他以银行为目标的特洛伊木马程序,到现在的大规模分布式拒绝服务(DDoS)攻击,再到新颖的钓鱼攻击和勒索软件,金融服务业已成为遭遇网络犯罪威胁最严重的行业之一。金融服务业的重要性不言而喻࿰…...
FreeRTOS简介
一 FreeRTOS简介 实时操作系统(Real-Time Operating System,RTOS)是一种专门设计用于处理实时任务的操作系统。它的主要作用是提供具有严格时间约束的任务调度和资源管理,以满足实时系统对时间的要求。 可分为硬实时和软实时&am…...
51单片机点灯
51单片机点灯 1.点亮LED灯 #include "reg52.h"sbit ledOne P3^7;void main() {//灯亮,给一个P3.7低电平ledOne 0; }给LED1对应标号的P3^7一个低电平,就能点亮LED灯2.LED灯闪烁 #include "reg52.h"sbit ledOne P3^7;void Delay…...
sql注入之union联合注入
一、Union注入 联合查询注入是联合两个表进行注入攻击,使用关键词 union select 对两个表进行联合查询。两个表的字段数要相同,不然会出现报错。列数相同 union 特性是显示两张表 我们就可以吧第一个参数变为------负--的 或者不存在的值 就行了 显示就…...
activiti解决实现ExecutionListener spring 自动注入@Autowired为null问题
在 Activiti 中,当使用 ExecutionListener 时,Spring 的自动注入机制(例如 Autowired)可能无法正常工作。这是因为 ExecutionListener 是由 Activiti 管理的,并不是由 Spring 管理的,所以无法通过 Autowire…...

【Lazy ORM 整合druid 实现mysql监控】
Lazy ORM 整合druid 实现mysql监控 JDK 17 Lazy ORM框架地址 up、up欢迎start、issues 当前项目案例地址 框架版本描述spring-boot3.0.7springboot框架wu-framework-web1.2.2-JDK17-SNAPSHOTweb容器Lazy -ORM1.2.2-JDK17-SNAPSHOTORMmysql-connector-j8.0.33mysql驱动druid-…...

【Deeplabv3+】Ubutu18.04中使用pytorch复现Deeplabv3+第三步)-----CityscapesScripts生成自己的标签
本文是在前面两篇文章的基础上,讲解如何更改训练数据集颜色,需要与前面两篇文章连起来看。 本文用于修改cityscapes数据集的标签颜色与Semankitti数据集的标签一致,对修改后的数据集进行训练。需要下载两个开发工具包和一个数据集࿰…...
《动手学深度学习(PyTorch版)》笔记3.3
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。…...

OpenGL ES 渲染 NV21、NV12 格式图像有哪些“姿势”?
使用2个纹理实现 NV21 格式图像渲染 前文提到渲染 NV21 格式图像需要使用 2 个纹理,分别用于保存 Y plane 和 UV plane 的数据,然后在片段着色器中分别对 2 个纹理进行采样,转换成 RGB 数据。 OpenGLES 渲染 NV21或 NV12 格式图像需要用到 GL_LUMINANCE 和 GL_LUMINANCE_A…...
P8813 [CSP-J 2022] 乘方 题解
目录 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 样例 #2样例输入 #2样例输出 #2 提示题目简化题目思路AC 代码 观前提示,此题解解法非正解,仅仅是卡过数据才 A C AC AC 的。正解请参考他人博客。 题目描述 小文同学刚刚接触了信息学竞赛…...
Ubuntu 常用命令、docker 常用命令、unzip常用命令、tar常用命令
ubuntu 常用命令: 进入管理员模式: sudo su退出管理员模式: su <用户名>重启系统: rebootubuntu 复制文件夹下文件到其他文件夹下 cp -r source_folder/* destination_folder/删除文件夹下内容而不删除自身(进入到目录…...

保护医疗数据不受威胁:MPLS专线在医疗网络安全中的角色
随着数字技术的快速发展,医疗行业正在经历一场革命。从电子健康记录到远程医疗服务,数字化不仅提高了效率,也带来了前所未有的挑战--尤其是关于数据安全和隐私保护的挑战。在这样的背景下,如何确保敏感的医疗数据安全传输…...
Java面试题夺命连环问
如何实现一个ioc容器 配置文件配置包扫码路径递归包扫描获取.class文件反射确定需要 交给IOC管理的类对需要注入的类进行依赖注入 配置文件中指定需要扫描的包路径 定义一些注解,分别表示访问控制层,业务服务层,数据持久层,依赖…...
华为策略路由+NQA配置
---NQA--- [RouterA] nqa test-instance admin NQA [RouterA-nqa-admin-vlan10] test-type icmp [RouterA-nqa-admin-vlan10] destination-address ipv4 对方地址 [RouterA-nqa-admin-vlan10] frequency 10 [RouterA-nqa-admin-vlan10] probe-count 2 [RouterA-nqa-admin-vlan…...
逆置字符串
将字符串逆序,比如输入abcd,返回dcba void reverse(char*left,char *right) { while (right>left) { char temp *left; *left *right; *right temp; right--; left; } } int main() { char arr[100] { 0 };//定义…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...

Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...