当前位置: 首页 > news >正文

Java 数据结构篇-实现二叉搜索树的核心方法

🔥博客主页: 【小扳_-CSDN博客】
❤感谢大家点赞👍收藏⭐评论✍
 

文章目录

        1.0 二叉搜索树的概述

        2.0 二叉搜索树的成员变量及其构造方法

        3.0 实现二叉树的核心接口

        3.1 实现二叉搜索树 - 获取值 get(int key)

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        5.0 实现二叉搜索树核心方法的完整代码


        1.0 二叉搜索树的概述

        二叉搜索树是一种数据结构,用于存储数据并支持快速的插入、删除和搜索操作。它是一种树形结构。

        它具有以下特点:

                - 每个节点最多有两个子节点,分别称为左子节点和右子节点。

                - 对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。

                - 中序遍历二叉搜索树可以得到有序的元素序列。

        由于其特性,二叉搜索树在插入、删除和搜索操作上具有较高的效率。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。然而,如果树的结构不平衡,最坏情况下这些操作的时间复杂度可能会达到 O(n)。由于其高效的搜索特性,二叉搜索树常被用于实现关联数组和集合等数据结构。然而,为了避免树的结构不平衡导致性能下降,人们也发展了平衡二叉搜索树(如红黑树、AVL树)等变种。

        2.0 二叉搜索树的成员变量及其构造方法

        外部类成员变量有:根节点节点类(内部类)

        外部类构造方法:默认的构造方法,对外公开二叉搜索树的核心方法

        节点类的成员变量有:

                - key 关键字:相对比一般的二叉树,二叉搜索树可以明显提高增删查改的效率原因在于关键字,可以根据比较两个关键字的大小进行操作。

                - value 值:作用则为存放值。

                - left :链接左节点。

                - right:链接右节点。

        节点类的构造方法:

                带两个参数的构造方法:参数为 key 、value 

                带四个参数的构造方法:参数为 key 、value 、left 、right

代码如下:

public class BinaryTree {BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}}

        补充二叉搜索树在增、删、查、改的效率高的原因:

        二叉搜索树的高效性与其关键字的特性密切相关。二叉搜索树的关键特性是,对于每个节点,其左子节点的值小于该节点的值,右子节点的值大于该节点的值。这种特性使得在二叉搜索树中进行搜索、插入和删除操作时,可以通过比较关键字的大小来快速定位目标节点,从而实现高效的操作。在平均情况下,这些操作的时间复杂度为 O(log n),其中 n 为树中节点的数量。因此,关键字的有序性是二叉搜索树能够实现高效操作的关键原因之一。

        3.0 实现二叉树的核心接口

​
public interface BinarySearchTreeInterface {/***查找 key 对应的 value*/Object get(int key);/*** 查找最小关键字对应值*/Object min();/*** 查找最大关键字对应值*/Object max();/*** 存储关键字与对应值*/void put(int key, Object value);/*** 查找关键字的后驱*/Object successor(int key);/*** 查找关键字的前驱*/Object predecessor(int key);/*** 根据关键字删除*/Object delete(int key);
}​

        3.1 实现二叉搜索树 - 获取值 get(int key)

        实现思路为:从根节点开始,先判断当前的节点 p.key 与 key 进行比较,若 p.key > key,则向左子树下潜 p = p.left ;若 p.key < key ,则向右子树下潜 p = p.right ;若 p.key == key ,则找到到了关键字,返回该节点的值 p.value 。按这样的规则一直循环下去,直到 p == null 退出循环,则说明没有找到对应的节点,则返回 null 。

代码如下:

    @Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key < key) {p = p.right;}else {return p.value;}}return null;}

        若 root 为 null ,则不需要再进行下去了,直接结束。

        3.2 实现二叉搜索树 - 获取最小的关键字 min(BinaryNode node)

        实现思路:在某一个树中,需要得到最小的关键字,由根据数据结构的特点,最小的关键字在数的最左边,简单来说:一直向左子树遍历下去,直到 p.left == null 时,则该 p 节点就是最小的关键字了。然后找到了最小的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Overridepublic Object min() {if (root == null) {return null;}BinaryNode p = root;while(p.left != null) {p = p.left;}return p.value;}//重载了一个方法,带参数的方法。public Object min(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.left != null) {p = p.left;}return p.value;}

递归实现:

    //使用递归实现找最小关键字public Object minRecursion() {return doMin(root);}private Object doMin(BinaryNode node) {if (node == null) {return null;}if (node.left == null) {return node.value;}return doMin(node.left);}

        

        3.3 实现二叉搜索树 - 获取最大的关键字 max(BinaryNode node)

        实现思路为:在某一个树中,需要得到最大的关键字,由根据数据结构的特点,最大的关键字在数的最右边,简单来说:一直向右子树遍历下去,直到 p.right == null 时,则该 p 节点就是最大的关键字了。然后找到了最大的节点,返回该节点的值即可。

代码如下:

非递归实现:

    @Overridepublic Object max() {if (root == null) {return null;}BinaryNode p = root;while(p.right != null) {p = p.right;}return p.value;}//重载了一个带参数的方法public Object max(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.right != null) {p = p.right;}return p.value;}

递归实现:

    //使用递归实现找最大关键字public Object maxRecursion() {return doMax(root);}private Object doMax(BinaryNode node) {if (node == null) {return null;}if (node.right == null) {return node.value;}return doMax(node.right);}

        3.4 实现二叉搜索树 - 增、更新 put( int key, Object value)

        实现思路为:在二叉搜索树中先试着查找是否存在与 key 对应的节点 p.key 。若找到了,则为更新该值 p.value = value 即可。若找不到,则需要新增该关键字节点

        具体来分析如何新增关键字,先定义 BinaryNode parent 、 BinaryNode p,p 指针在去比较 key 之前,先让 parent 指向 p 。最后循环结束后, p == null ,对于 parent 来说,此时正指着 p 节点的双亲节点。 接着创建一个新的节点,BinaryNode newNode = new BinaryNode(key, value) ,则此时还需要考虑的是,该新的节点该连接到 parent 的左孩子还是右孩子 ?需要比较 parent.key 与 newNode.key 的大小即可,若 parent.key > newNode.key,则链接到 parent.left 处;若 prent.key < newNode.key ,则连接到 parent.right 处。

代码如下:

    @Overridepublic void put(int key, Object value) {if (root == null) {root = new BinaryNode(key,value);return;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {parent = p;if (p.key > key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key < parent.key) {parent.left = newNode;}else {parent.right = newNode;}}

        3.5 实现二叉搜索树 - 查找关键字的后驱节点 successor(int key)

        具体实现思路为:先遍历找到该关键字的节点,若找不到,则返回 null ;若找到了,判断以下的两种情况,第一种情况:该节点有右子树,则该关键字的后驱为右子树的最小关键字;第二种情况:该节点没有右子树,则该关键字的后驱为从右向左而来的祖宗节点。最后返回该后驱节点的值 

代码如下:

    @Overridepublic Object successor(int key) {if (root == null) {return null;}//先找到该关键字节点BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {sParent = p;p = p.left;} else if (p.key < key) {p = p.right;}else {break;}}//没有找到关键字的情况if (p == null) {return null;}//情况一:该节点存在右子树,则该后继为右子树的最小关键字if (p.right != null) {return min(p.right);}//情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点if (sParent == null) {//可能不存在后继节点,比如最大关键字的节点就没有后继节点了return null;}return sParent.value;}

        3.6 实现二叉搜索树 - 查找关键字的前驱节点 predecessor(int key)

        具体实现思路为:先对该二叉树进行遍历寻找 key 的节点,若遍历结束还没找到,则返回 null ;若找到了,需要判断以下两种情况:

        第一种情况:该节点有左子树,则该前驱节点为该左子树的最大关键字节点。

        第二种情况:该节点没有左子树,则该前驱节点为从左向右而来的祖宗节点。

        最后返回该前驱节点的值。

代码如下:

    @Overridepublic Object predecessor(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {p = p.left;} else if (p.key < key) {sParent = p;p = p.right;}else {break;}}if (p == null) {return null;}//情况一:存在左子树,则该前任就为左子树的最大关键字节点if (p.left != null) {return max(p.left);}//情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点if (sParent == null) {return null;}return sParent.value;}

        3.7 实现二叉搜索树 - 删除关键字节点 delete(int key)

        具体实现思路为:先遍历二叉树,查找该关键字节点。若遍历结束了还没有找到,则返回 null ;若找到了,则需要以下四种情况:

        第一种情况:找到该删除的节点只有左子树。则直接让该左子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于左子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则左子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则左子树也是链接到该双亲节点的右边。

        第二种情况:找到该删除的节点只有右子树。则直接让该右子树 "托付" 给删除节点的双亲节点,这就删除了该节点了。至于右子树是链接到双亲节点的左边还有右边这个问题,根据该数据结构的特点,由该删除节点来决定。若删除的节点之前是链接该双亲节点的左边,则右子树也是链接到该双亲节点的左边;若删除的节点之前是链接该双亲节点的右边,则右子树也是链接到该双亲节点的右边。

        第三种情况:找到该删除节点都没有左右子树。该情况可以归并到以上两种情况的任意一种处理均可。

        第四种情况:找到该删除节点都有左右子树。分两步:第一步,先找后继节点来替换删除节点,找该后继节点直接到删除节点的右子树中找最小的关键字节点即可。第二步,需要先将后继节点的右子树处理好,需要将该右子树交给替换节点的双亲节点链接。还需要判断两种情况:第一种情况,若删除节点与替换节点是紧挨着的,对替换节点的右子树无需要求,只对左子树重新赋值;若删除节点与替换节点不是紧挨着的关系,对替换节点的左右子树都要重新赋值。

代码如下:

    @Overridepublic Object delete(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {if (p.key > key) {parent = p;p = p.left;} else if (p.key < key) {parent = p;p = p.right;}else {break;}}//没有找到该关键字的节点if (p == null) {return null;}//情况一、二、三:只有左子树或者右子树或者都没有if (p.right == null) {shift(parent,p,p.left);} else if (p.left == null) {shift(parent,p,p.right);}else {//情况四:有左右子树//替换节点采用删除节点的后继节点//先看被删的节点与替换的节点是否为紧挨在一起BinaryNode s = p.right;BinaryNode sParent = p;while (s.left != null) {sParent = s;s = s.left;}if (sParent != p) {//说明没有紧挨在一起,则需要将替换节点的右子树进行处理shift(sParent,s,s.right);s.right = p.right;}shift(parent,p,s);s.left = p.left;}return p.value;}private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {if (parent == null) {root = next;} else if (parent.left == delete) {parent.left = next;}else if (parent.right == delete){parent.right = next;}}

        为了方便,将删除节点与替换节点之间的替换操作单独成一个方法出来。

        递归实现删除关键字 key 节点,同理,也是细分为以上描述的四种情况。

代码如下:

    //使用递归实现删除关键字节点public BinaryNode deleteRecursion(BinaryNode node , int key) {if (node == null) {return null;}if (node.key > key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}

        3.8 实现二叉搜索树 - 查找范围小于关键字的节点值 less(int key)

        具体实现思路为:利用中序遍历,来遍历每一个节点的 key ,若小于 key 的节点,直接放到数组容器中;若大于 key 的,可以直接退出循环。最后返回该数组容器即可

代码如下:

    //找 < key 的所有 valuepublic List<Object> less(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();BinaryNode p = root;Stack<BinaryNode> stack = new Stack<>();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key < key) {result.add(pop.value);}else {break;}p = pop.right;}}return result;}

        3.9 实现二叉搜索树 - 查找范围大于关键字的节点值 greater(int key)

        具体实现思路:利用中序遍历,来遍历每一个节点的 key ,若大于 key 的节点,直接放到数组容器中。

代码如下:

    //找 > key 的所有 valuepublic List<Object> greater(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}

该方法的改进:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树。因此只要小于 key 的关键字节点,直接退出循环

代码如下:

    //改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List<Object> greater1(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}

        4.0 实现二叉搜索树 - 查找范围大于 k1 且小于 k2 关键字的节点值 between(int k1, int k2)

        实现思路跟以上的思路没有什么区别,唯一需要注意的是,当前节点的 key > k2 则可以退出循环了。

代码如下:

//找到 >= k1 且 =< k2 的所有valuepublic List<Object> between(int k1, int k2) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key <= k2) {result.add(pop.value);} else if (pop.key > k2) {break;}p = pop.right;}}return result;}

        5.0 实现二叉搜索树核心方法的完整代码

实现接口代码:

import java.util.ArrayList;import java.util.List;
import java.util.Stack;public class BinaryTree implements BinarySearchTreeInterface{BinaryNode root = null;static class BinaryNode {int key;Object value;BinaryNode left;BinaryNode right;public BinaryNode(int kty, Object value) {this.key = kty;this.value = value;}public BinaryNode(int key, Object value, BinaryNode left, BinaryNode right) {this.key = key;this.value = value;this.left = left;this.right = right;}}@Overridepublic Object get(int key) {if (root == null) {return null;}BinaryNode p = root;while(p != null) {if (p.key > key) {p = p.left;}else if (p.key < key) {p = p.right;}else {return p.value;}}return null;}@Overridepublic Object min() {if (root == null) {return null;}BinaryNode p = root;while(p.left != null) {p = p.left;}return p.value;}public Object min(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.left != null) {p = p.left;}return p.value;}//使用递归实现找最小关键字public Object minRecursion() {return doMin(root);}private Object doMin(BinaryNode node) {if (node == null) {return null;}if (node.left == null) {return node.value;}return doMin(node.left);}@Overridepublic Object max() {if (root == null) {return null;}BinaryNode p = root;while(p.right != null) {p = p.right;}return p.value;}public Object max(BinaryNode node) {if (node == null) {return null;}BinaryNode p = node;while (p.right != null) {p = p.right;}return p.value;}//使用递归实现找最大关键字public Object maxRecursion() {return doMax(root);}private Object doMax(BinaryNode node) {if (node == null) {return null;}if (node.right == null) {return node.value;}return doMax(node.right);}@Overridepublic void put(int key, Object value) {if (root == null) {root = new BinaryNode(key,value);return;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {parent = p;if (p.key > key) {p = p.left;} else if (p.key < key) {p = p.right;}else {p.value = value;return;}}//该树没有该关键字,因此需要新建节点对象BinaryNode newNode = new BinaryNode(key,value);if (newNode.key < parent.key) {parent.left = newNode;}else {parent.right = newNode;}}@Overridepublic Object successor(int key) {if (root == null) {return null;}//先找到该关键字节点BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {sParent = p;p = p.left;} else if (p.key < key) {p = p.right;}else {break;}}//没有找到关键字的情况if (p == null) {return null;}//情况一:该节点存在右子树,则该后继为右子树的最小关键字if (p.right != null) {return min(p.right);}//情况二:该节点不存在右子树,那么该后继就需要到祖宗从右向左的节点if (sParent == null) {//可能不存在后继节点,比如最大关键字的节点就没有后继节点了return null;}return sParent.value;}@Overridepublic Object predecessor(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode sParent = null;while (p != null) {if (p.key > key) {p = p.left;} else if (p.key < key) {sParent = p;p = p.right;}else {break;}}if (p == null) {return null;}//情况一:存在左子树,则该前任就为左子树的最大关键字节点if (p.left != null) {return max(p.left);}//情况二:不存在左子树,则该前任为从祖宗自左向右而来的节点if (sParent == null) {return null;}return sParent.value;}@Overridepublic Object delete(int key) {if (root == null) {return null;}BinaryNode p = root;BinaryNode parent = null;while (p != null) {if (p.key > key) {parent = p;p = p.left;} else if (p.key < key) {parent = p;p = p.right;}else {break;}}//没有找到该关键字的节点if (p == null) {return null;}//情况一、二、三:只有左子树或者右子树或者都没有if (p.right == null) {shift(parent,p,p.left);} else if (p.left == null) {shift(parent,p,p.right);}else {//情况四:有左右子树//替换节点采用删除节点的后继节点//先看被删的节点与替换的节点是否为紧挨在一起BinaryNode s = p.right;BinaryNode sParent = p;while (s.left != null) {sParent = s;s = s.left;}if (sParent != p) {//说明没有紧挨在一起,则需要将替换节点的右子树进行处理shift(sParent,s,s.right);s.right = p.right;}shift(parent,p,s);s.left = p.left;}return p.value;}private void shift(BinaryNode parent, BinaryNode delete, BinaryNode next) {if (parent == null) {root = next;} else if (parent.left == delete) {parent.left = next;}else if (parent.right == delete){parent.right = next;}}//使用递归实现删除关键字节点public BinaryNode deleteRecursion(BinaryNode node , int key) {if (node == null) {return null;}if (node.key > key) {node.left = deleteRecursion(node.left,key);return node;} else if (node.key < key) {node.right = deleteRecursion(node.right,key);return node;}else {if (node.right == null) {return node.left;} else if (node.left == null) {return node.right;}else {BinaryNode s = node.right;while (s.left != null) {s = s.left;}s.right = deleteRecursion(node.right,s.key);s.left = node.left;return s;}}}//找 < key 的所有 valuepublic List<Object> less(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();BinaryNode p = root;Stack<BinaryNode> stack = new Stack<>();while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key < key) {result.add(pop.value);}else {break;}p = pop.right;}}return result;}//找 > key 的所有 valuepublic List<Object> greater(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}p = pop.right;}}return result;}//改进思路:遍历方向进行调整,先从右子树开始,再访问根节点,最后才到左子树public List<Object> greater1(int key) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while (p != null || !stack.isEmpty()) {if (p != null ) {stack.push(p);p = p.right;}else {BinaryNode pop = stack.pop();if (pop.key > key) {result.add(pop.value);}else {break;}p = pop.left;}}return result;}//找到 >= k1 且 =< k2 的所有valuepublic List<Object> between(int k1, int k2) {if (root == null) {return null;}ArrayList<Object> result = new ArrayList<>();Stack<BinaryNode> stack = new Stack<>();BinaryNode p = root;while(p != null || !stack.isEmpty()) {if (p != null) {stack.push(p);p = p.left;}else {BinaryNode pop = stack.pop();if (pop.key >= k1 && pop.key <= k2) {result.add(pop.value);} else if (pop.key > k2) {break;}p = pop.right;}}return result;}}

 

相关文章:

Java 数据结构篇-实现二叉搜索树的核心方法

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 二叉搜索树的概述 2.0 二叉搜索树的成员变量及其构造方法 3.0 实现二叉树的核心接口 3.1 实现二叉搜索树 - 获取值 get(int key) 3.2 实现二叉搜索树 - 获取最小…...

go语言(二十一)---- channel的关闭

channel不像文件一样需要经常去关闭&#xff0c;只有当你确实没有任何发送数据了&#xff0c;或者你想显示的结束range循环之类的&#xff0c;才去关闭channel。关闭channel后&#xff0c;无法向channel再发送数据&#xff0c;&#xff08;引发pannic错误后&#xff0c;导致接收…...

【PyQt】01-PyQt下载

文章目录 前言静态库 一、PyQt是什么&#xff1f;二、安装1.Windows环境下安装安装PyQt5Designer 2.Liunx环境下安装 总结 前言 拜吾师 PyQt5 快速入门 静态库 补充一点知识&#xff1a; Windows&#xff1a; .lib Linux: .a .so(动态库) 简单描述PyQt就是python调用C的Qt文…...

不一样的味觉体验:精酿啤酒与烤肉的绝妙搭配

在繁华的都市生活中&#xff0c;人们总是在寻找那份与众不同的味觉享受。当夏日的微风轻轻拂过&#xff0c;你是否想过&#xff0c;与三五好友围坐在一起&#xff0c;拿着Fendi Club啤酒与烤肉的绝妙搭配&#xff0c;畅谈生活点滴&#xff0c;感受那份惬意与自在&#xff1f; F…...

linux系统ansible的jiaja2的语法和简单剧本编写

jianja2语法和简单剧本 jinja2语法Jinja default()设定if语句for语句 ansiblejiaja2的使用ansible目录结构&#xff1a;tasks目录下文件内容&#xff1a;nginx模板文件ansible变量文件ansible主playbook文件测试并执行&#xff1a;查看检测执行结果 剧本编写安装apache安装mysq…...

Three.js PBR 物理渲染

详解 Three.js PBR 物理渲染 Three.js 是一个流行的基于 WebGL 的 JavaScript 库&#xff0c;专门用于创建和运行三维动画和游戏。其中很关键的一部分是物理渲染&#xff08;PBR&#xff09;。本文将深入探讨 Three.js 的 PBR 渲染&#xff0c;并为初学者提供实用的指导。 什…...

POSIX(包含程序的可移植性) -- 详解

1. 什么是 POSIX 参考链接–知乎 POSIX 标准包含了进程管理、文件管理、网络通信、线程和同步、信号处理等方面的功能。 这些接口定义了函数、数据类型和常量等&#xff0c;为开发者提供了一个可移植的方法来与操作系统进行交互。 2. 谁遵守这个标准 遵守 POSIX 标准的主要是…...

Jmeter学习系列之五:基础线程组(Thread Group)

前言 线程组是一系列线程的集合,每一个线程代表着一个正在使用应用程序的用户。在 jmeter 中,每个线程意味着模拟一个真实用户向服务器发起请求。 在 jmeter 中,线程组组件运行用户设置线程数量、初始化方式等等配置。 例如,如果你设置线程数为 100,那么 jmeter 将创建…...

Android 双卡适配 subId 相关方法

业务场景 双卡设备进行网络等业务时&#xff0c;需要正确操作对应的卡。 执行卡业务和主要是使用subId和 PhoneId/SlotId进行区分隔离。 代码举例 初始化subId //初始化subId private int mSubId SubscriptionManager.INVALID_SUBSCRIPTION_ID;//1、通过intent传值&#x…...

使用Logstash将MySQL中的数据同步至Elasticsearch

目录 1 使用docker安装ELK 1.1 安装Elasticsearch 1.2 安装Kibana 1.3 安装Logstash 2 数据同步 2.1 准备MySQL表和数据 2.2 运行Logstash 2.3 测试 3 Logstash报错(踩坑)记录 3.1 记录一 3.1.1 报错信息 3.1.2 报错原因 3.1.3 解决方案 3.2 记录二 3.2.1 报错信…...

米贸搜|Facebook公共主页反馈分数(ACE) 更新

前段时间Meta改进了公共主页反馈分数的仪表板&#xff0c;发现有部分广告主似乎没有接受到这条动态&#xff0c;今天为大家整理出更新内容&#xff0c;方便各位广告主了解学习&#xff01; Meta重新设计了公共主页反馈分数仪表板&#xff0c;以便广告主能更轻松地了解总体反馈…...

代码随想录算法训练营第三十七天| 738.单调递增的数字、968.监控二叉树

738.单调递增的数字 题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 解题思路&#xff1a;一旦出现strNum[i - 1] > strNum[i]的情况&#xff08;非单调递增&#xff09;&#xff0c;首先想让strNum[i - 1]--&#xff0c;然…...

51单片机编程应用(C语言):独立按键

目录 1.独立按键介绍 2.独立按键控制LED亮灭 1.1按下时LED亮&#xff0c;松手LED灭&#xff08;按一次执行亮灭&#xff09; 1.2首先按下时无操作&#xff0c;松手时LED亮&#xff08;再按下无操作&#xff0c;所以LED亮&#xff09;&#xff0c;松手LED灭&#xff08;松手时…...

小程序定制开发前,应该考虑些什么?

引言 在移动互联网时代&#xff0c;小程序已经成为许多企业和个人推广业务、提供服务的理想平台。然而&#xff0c;在进行小程序定制开发之前&#xff0c;开发者和业务方需要细致入微地考虑一系列关键因素&#xff0c;以确保最终的小程序既能满足用户需求&#xff0c;又能够顺…...

2024/2/1学习记录

echarts 为柱条添加背景色&#xff1a; 若想设置折线图的点的样式&#xff0c;设置 series.itemStyle 指定填充颜色就好了&#xff0c;设置线的样式设置 lineStyle 就好了。 在折线图中倘若要设置空数据&#xff0c;用 - 表示即可&#xff0c;这对于其他系列的数据也是 适用的…...

10个React状态管理库推荐

本文将为您推荐十款实用的React状态管理库&#xff0c;帮助您打造出高效、可维护的前端应用。让我们一起看看这些库的魅力所在&#xff01; 在前端开发中&#xff0c;状态管理是至关重要的一环。React作为一款流行的前端框架&#xff0c;其强大的状态管理功能备受开发者青睐。…...

从0开始写android

系列文章目录 文章目录 一、 从0开始实现 onCreate 的setContentView二、 从0 开始实现 onMeasure三、 从0 开始实现 onLayout四、 从0 开始实现 onDraw总结 前言 接上文&#xff0c;测量完View树的每个节点View的宽和高后&#xff0c;开始布局。 一、ViewRootImpl 的调用栈…...

使用pygame建立一个简单的使用键盘方向键移动的方块小游戏

import pygame import sys# 初始化pygame pygame.init()# 设置窗口大小 screen_size (640, 480) # 创建窗口 screen pygame.display.set_mode(screen_size) # 设置窗口标题 pygame.display.set_caption("使用键盘方向键移动的方块的简单小游戏")# 设置颜色 bg_colo…...

从零开始:CentOS系统下搭建DNS服务器的详细教程

前言 如果你希望在CentOS系统上建立自己的DNS服务器,那么这篇文章绝对是你不容错过的宝藏指南。我们提供了详尽的步骤和实用技巧,让你能够轻松完成搭建过程。从安装必要的软件到配置区域文件,我们都将一一为你呈现。无论你的身份是运维人员,还是程序员,抑或是对网络基础设…...

2024美赛B题解析:寻找潜水器Searching for Submersibles

解析&#xff1a;传送门 Maritime Cruises Mini-Submarines &#xff08;MCMS&#xff09; 是一家总部位于希腊的公司&#xff0c;负责建造潜水器 能够将人类带到海洋的最深处。潜水器被移动到 位置和部署不受主机船的束缚。MCMS现在希望使用他们的潜水器 带领游客冒险探索爱奥…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...