当前位置: 首页 > news >正文

【PaddleSpeech】语音合成-男声

环境安装

系统:Ubuntu >= 16.04

源码下载

  • 使用apt安装 build-essential
sudo apt install build-essential
  • 克隆 PaddleSpeech 仓库
# github下载
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
# 也可以从gitee下载
git clone https://gitee.com/paddlepaddle/PaddleSpeech.git# 进入PaddleSpeech目录
cd PaddleSpeech

安装 Conda

# 下载 miniconda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -P tools/
# 安装 miniconda
bash tools/Miniconda3-latest-Linux-x86_64.sh -b
# conda 初始化
$HOME/miniconda3/bin/conda init
# 激活 conda
bash
# 创建 Conda 虚拟环境
conda create -y -p tools/venv python=3.8
# 激活 Conda 虚拟环境:
conda activate tools/venv
# 安装 Conda 包
conda install -y -c conda-forge sox libsndfile swig bzip2 libflac bc

 安装 PaddlePaddle

#CPU版本安装
python3 -m pip install paddlepaddle- -i https://mirror.baidu.com/pypi/simple#GPU版本安装,注意:2.4.1 只是一个示例,请按照对paddlepaddle的最小依赖进行选择。
python3 -m pip install paddlepaddle-gpu==2.4.1 -i https://mirror.baidu.com/pypi/simple

用开发者模式安装 PaddleSpeech 

pip install pytest-runner -i https://pypi.tuna.tsinghua.edu.cn/simple pip install -e .[develop] -i https://pypi.tuna.tsinghua.edu.cn/simple

下载预训练模型

#下载预训练模型:声学模型、声码器
!mkdir download#中文男声学模型
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_male_zh_ckpt_1.4.0.zip
!unzip -d download download/fastspeech2_male_zh_ckpt_1.4.0.zip#声码器
!wget -P download https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_male_ckpt_1.4.0.zip
!unzip -d download download/hifigan_male_ckpt_1.4.0.zip

语音合成

脚本命名为:FastSpeech2-hifigan.py

import argparse
import os
from pathlib import Path
import IPython.display as dp
import matplotlib.pyplot as plt
import numpy as np
import paddle
import soundfile as sf
import yaml
from paddlespeech.t2s.frontend.zh_frontend import Frontend
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2
from paddlespeech.t2s.models.fastspeech2 import FastSpeech2Inference
from paddlespeech.t2s.models.hifigan import HiFiGANGenerator
from paddlespeech.t2s.models.hifigan import HiFiGANInference
from paddlespeech.t2s.modules.normalizer import ZScore
from yacs.config import CfgNode# 配置预训练模型
fastspeech2_config = "download/fastspeech2_male_zh_ckpt_1.4.0/default.yaml"
fastspeech2_checkpoint = "download/fastspeech2_male_zh_ckpt_1.4.0/snapshot_iter_76000.pdz"
fastspeech2_stat = "download/fastspeech2_male_zh_ckpt_1.4.0/speech_stats.npy"
hifigan_config = "download/hifigan_male_ckpt_1.4.0/default.yaml"
hifigan_checkpoint = "download/hifigan_male_ckpt_1.4.0/snapshot_iter_630000.pdz"
hifigan_stat = "download/hifigan_male_ckpt_1.4.0/feats_stats.npy"
phones_dict = "download/fastspeech2_male_zh_ckpt_1.4.0/phone_id_map.txt"
# 读取 conf 配置文件并结构化
with open(fastspeech2_config) as f:fastspeech2_config = CfgNode(yaml.safe_load(f))
with open(hifigan_config) as f:hifigan_config = CfgNode(yaml.safe_load(f))
print("========Config========")
print(fastspeech2_config)
print("---------------------")
print(hifigan_config)# 构造文本前端对象
# 传入 phones_dict 会把相应的 phones 转换成 phone_ids
frontend = Frontend(phone_vocab_path=phones_dict)
print("Frontend done!")# 调用文本前端
# input = "我每天中午12:00起床"
# input = "我出生于2005/11/08,那天的最低气温达到-10°C"
input = "先生您好,欢迎使用百度飞桨框架进行深度学习!"
input_ids = frontend.get_input_ids(input, merge_sentences=True, print_info=True)
phone_ids = input_ids["phone_ids"][0]
print("phone_ids:%s"%phone_ids)# 初始化声学模型
with open(phones_dict, "r") as f:phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = fastspeech2_config.n_mels
model = FastSpeech2(idim=vocab_size, odim=odim, **fastspeech2_config["model"])
# 加载预训练模型参数
model.set_state_dict(paddle.load(fastspeech2_checkpoint)["main_params"])
# 推理阶段不启用 batch norm 和 dropout
model.eval()
stat = np.load(fastspeech2_stat)
# 读取数据预处理阶段数据集的均值和标准差
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
# 构造归一化的新模型
fastspeech2_normalizer = ZScore(mu, std)
fastspeech2_inference = FastSpeech2Inference(fastspeech2_normalizer, model)
fastspeech2_inference.eval()
print("FastSpeech2 done!")# 调用声学模型
with paddle.no_grad():mel = fastspeech2_inference(phone_ids)
print("shepe of mel (n_frames x n_mels):")
print(mel.shape)
# 绘制声学模型输出的 mel 频谱
#fig, ax = plt.subplots(figsize=(16, 6))
#im = ax.imshow(mel.T, aspect='auto',origin='lower')
#plt.title('Mel Spectrogram')
#plt.xlabel('Time')
#plt.ylabel('Frequency')
#plt.tight_layout()# 初始化声码器
vocoder = HiFiGANGenerator(**hifigan_config["generator_params"])
# 模型加载预训练参数
vocoder.set_state_dict(paddle.load(hifigan_checkpoint)["generator_params"])
vocoder.remove_weight_norm()
# 推理阶段不启用 batch norm 和 dropout
vocoder.eval()
# 读取数据预处理阶段数据集的均值和标准差
stat = np.load(hifigan_stat)
mu, std = stat
mu, std = paddle.to_tensor(mu), paddle.to_tensor(std)
hifigan_normalizer = ZScore(mu, std)
# 构建归一化的模型
hifigan_inference = HiFiGANInference(hifigan_normalizer, vocoder)
hifigan_inference.eval()
print("HiFiGan done!")# 调用声码器
with paddle.no_grad():wav = hifigan_inference(mel)
print("shepe of wav (time x n_channels):%s"%wav.shape)# 绘制声码器输出的波形图
wave_data = wav.numpy().T
time = np.arange(0, wave_data.shape[1]) * (1.0 / fastspeech2_config.fs)
fig, ax = plt.subplots(figsize=(16, 6))
plt.plot(time, wave_data[0])
plt.title('Waveform')
plt.xlabel('Time (seconds)')
plt.ylabel('Amplitude (normed)')
plt.tight_layout()#保存音频
sf.write("output/output-male-hifigan.wav",wav.numpy(),samplerate=fastspeech2_config.fs)

 运行脚本

#运行脚本前,确保有output目录,没有就手动创建一下python3 FastSpeech2-hifigan.py#运行成功后在output/output-male-hifigan.wav目录可以找到生成的音频文件

1. 环境安装参考官网:https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.mdicon-default.png?t=N7T8https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/docs/source/install_cn.md

2. 飞桨PaddleSpeech语音技术课程 - 飞桨AI Studio星河社区-人工智能学习与实训社区 (baidu.com)

 3. 更多模型下载

Released Models — paddle speech 2.1 documentationicon-default.png?t=N7T8https://paddlespeech.readthedocs.io/en/latest/released_model.html

相关文章:

【PaddleSpeech】语音合成-男声

环境安装 系统:Ubuntu > 16.04 源码下载 使用apt安装 build-essential sudo apt install build-essential 克隆 PaddleSpeech 仓库 # github下载 git clone https://github.com/PaddlePaddle/PaddleSpeech.git # 也可以从gitee下载 git clone https://gite…...

AI-数学-高中-17-三角函数的定义

原作者视频:三角函数】4三角函数的定义(易)_哔哩哔哩_bilibili 初中: 高中:三角函数就是单位圆上的点的横纵坐标(x0,y0)。 示例1: 规则: 示例2: 示例3.1: 示例3.2 示例4…...

centOS/Linux系统安全加固方案手册

服务器系统:centos8.1版本 说明:该安全加固手册最适用版本为centos8.1版本,其他服务器系统版本可作为参考。 1.账号和口令 1.1 禁用或删除无用账号 减少系统无用账号,降低安全风险。 操作步骤  使用命令 userdel <用户名> 删除不必要的账号。  使用命令 passwd…...

编程实例分享,眼镜店电脑系统软件,配件验光管理顾客信息记录查询系统软件教程

编程实例分享&#xff0c;眼镜店电脑系统软件&#xff0c;配件验光管理顾客信息记录查询系统软件教程 一、前言 以下教程以 佳易王眼镜店顾客档案管理系统软件V16.0为例说明 如上图&#xff0c; 点击顾客档案&#xff0c;在这里可以对顾客档案信息记录保存查询&#xff0c;…...

完整的 HTTP 请求所经历的步骤及分布式事务解决方案

1. 对分布式事务的了解 分布式事务是企业集成中的一个技术难点&#xff0c;也是每一个分布式系统架构中都会涉及到的一个东西&#xff0c; 特别是在微服务架构中&#xff0c;几乎可以说是无法避免。 首先要搞清楚&#xff1a;ACID、CAP、BASE理论。 ACID 指数据库事务正确执行…...

SpringMVC请求和响应

文章目录 1、请求映射路径2、请求参数3、五种类型参数传递3.1、普通参数3.2、POJO类型参数3.3、嵌套POJO类型参数3.4、数组类型参数3.5、集合类型参数 4、json数据传递4.1、传递json对象4.2、传递json对象数组 5、日期类型参数传递6、响应6.1、响应页面6.2、文本数据6.3、json数…...

AIGC实战——深度学习 (Deep Learning, DL)

AIGC实战——深度学习 0. 前言1. 深度学习基本概念1.1 基本定义1.2 非结构化数据 2. 深度神经网络2.1 神经网络2.2 学习高级特征 3. TensorFlow 和 Keras4. 多层感知器 (MLP)4.1 准备数据4.2 构建模型4.3 检查模型4.4 编译模型4.5 训练模型4.6 评估模型 小结系列链接 0. 前言 …...

Django_基本增删改查

一、前提概述 通过项目驱动来学习&#xff0c;以图书管理系统为例&#xff0c;编写接口来实现对图书信息的查询&#xff0c;图书的添加&#xff0c;图书的修改&#xff0c;图书的删除等功能。&#xff08;不包含多重信息的校验&#xff0c;只为了熟悉增删改查接口的实现流程&a…...

数仓治理-存储资源治理

目录 一、存储资源治理的背景 二、存储资源治理的流程及思路 三、治理前如何评估 3.1 无用数据表/临时数据表下线评估 3.2 表及分区的生命周期评估 3.3 存储及压缩格式评估 3.4 根据业务场景实现节省存储评估 四、治理后的成效如何评估 一、存储资源治理的背景 由于早…...

Linux系统安全:安全技术 和 防火墙

一、安全技术 入侵检测系统&#xff08;Intrusion Detection Systems&#xff09;&#xff1a;特点是不阻断任何网络访问&#xff0c;量化、定位来自内外网络的威胁情况&#xff0c;主要以提供报警和事后监督为主&#xff0c;提供有针对性的指导措施和安全决策依据,类 似于监控…...

3dmatch-toolbox详细安装教程-Ubuntu14.04

3dmatch-toolbox详细安装教程-Ubuntu14.04 前言docker搭建Ubuntu14.04安装第三方库安装cuda/cundnn安装OpenCV安装Matlab 安装以及运行3dmatch-toolbox1.安装测试3dmatch-toolbox(对齐两个点云) 总结 前言 paper:3DMatch: Learning Local Geometric Descriptors from RGB-D Re…...

Hadoop与Spark横向比较【大数据扫盲】

大数据场景下的数据库有很多种&#xff0c;每种数据库根据其数据模型、查询语言、一致性模型和分布式架构等特性&#xff0c;都有其特定的使用场景。以下是一些常见的大数据数据库&#xff1a; NoSQL 数据库&#xff1a;这类数据库通常用于处理大规模、非结构化的数据。它们通常…...

软件工程知识梳理5-实现和测试

编码和测试统称为实现。 编码&#xff1a;把软件设计结果翻译成某种程序设计语言书写的程序。是对设计的进一步具体化&#xff0c;是软件工程过程的一个阶段。 测试&#xff1a;单元测试和集成测试&#xff0c;软件测试往往占软件开发总工作量的40%以上。 编码&#xff1a;选…...

WebRTC系列-自定义媒体数据加密

文章目录 1. 对外加密接口2. 对外加密实现前面的文章都有提过WebRTC使用的加密方式是SRTP这个库提供的,这个三方库这里就不做介绍,主要是对rtp包进行加密;自然的其调用也是WebRTC的rtp相关模块;同时在WebRTC里也提供一个自定义加密的接口,本文将围绕这个接口做介绍及分析;…...

golang的sqlite驱动不使用cgo实现 更换gorm默认的SQLite驱动

golang的sqlite驱动不使用cgo实现 更换gorm默认的SQLite驱动 最近在开发一个边缘物联网程序时使用Golang开发&#xff0c;用到GORM来操作SQLite数据库&#xff0c;GORM默认使用gorm.io/driver/sqlite这个库作为SQLite驱动&#xff0c;该库用CGO实现&#xff0c;在使用过程中遇…...

Linux 系统 ubuntu22.04 发行版本 固定 USB 设备端口号

前言&#xff1a; 项目中为了解决 usb 设备屏幕上电顺序导致屏幕偏移、触屏出现偏移等问题。 一、方法1&#xff1a;使用设备 ID 号 步骤&#xff1a; 查看 USB 设备的供应商ID和产品ID Bus 001 Device 003: ID 090c:1000 Silicon Motion, Inc. - Taiwan (formerly Feiya Te…...

Vue - 面试题持续更新

1.Vue路由模式 总共有Hash和History两种模式 Hash模式&#xff1a;在浏览器里面的符号 “#”&#xff0c;以及"#"后面的字符称之为Hash&#xff0c;用window.location.hash读取。 Hash模式的特点&#xff1a;hash是和浏览器对话的&#xff0c;和服务器没有关系&…...

Django的web框架Django Rest_Framework精讲(二)

文章目录 1.自定义校验功能&#xff08;1&#xff09;validators&#xff08;2&#xff09;局部钩子&#xff1a;单字段校验&#xff08;3&#xff09;全局钩子&#xff1a;多字段校验 2.raise_exception 参数3.context参数4.反序列化校验后保存&#xff0c;新增和更新数据&…...

VR视频编辑解决方案,全新视频内容创作方式

随着科技的飞速发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术正逐渐成为各个领域的创新力量。而美摄科技&#xff0c;作为VR技术的引领者&#xff0c;特别推出了一套全新的VR视频编辑方案&#xff0c;为企业提供了一个全新的视频内容创作方式。 美摄科技的VR视频编…...

有趣的CSS - 输入框选中交互动效

页面效果 此效果主要使用 css 伪选择器配合 html5 required 属性来实现一个简单的输入框的交互效果。 此效果可适用于登录页入口、小表单提交等页面&#xff0c;增强用户实时交互体验。 核心代码部分&#xff0c;简要说明了写法思路&#xff1b;完整代码在最后&#xff0c;可直…...

Unknown custom element:<xxx>-did you register the component correctly解决方案

如图所示控制台发现了爆红&#xff08;大哭&#xff09;&#xff1a; 报错解释&#xff1a; 当我们看到报错时&#xff0c;我们需要看到一些关键词&#xff0c;比如显眼的“component”和“name”这两个单词&#xff0c; 因此我们就从此处切入&#xff0c;大概与组件有关系。…...

计算机网络自顶向下Wireshark labs-HTTP

我直接翻译并在题目下面直接下我的答案了。 1.基本HTTP GET/response交互 我们开始探索HTTP&#xff0c;方法是下载一个非常简单的HTML文件 非常短&#xff0c;并且不包含嵌入的对象。执行以下操作&#xff1a; 启动您的浏览器。启动Wireshark数据包嗅探器&#xff0c;如Wir…...

解决pandas写入excel时的ValueError: All strings must be XML compatible报错

报错内容&#xff1a; ValueError: All strings must be XML compatible: Unicode or ASCII, no NULL bytes or control characters 报错背景 用pands批量写入excel文件&#xff0c;发生编码报错。检索了很多方案&#xff0c;都不能解决。 导致报错的原因是存在违法字符&…...

华为手表应用APP开发:watch系列 GT系列 1.配置调试设备

表开发:GT3(1)配置调试设备 初环境与设备获取手表UUID登录 AppGallery Connect 点击用户与访问初 希望能写一些简单的教程和案例分享给需要的人 鸿蒙可穿戴开发 支持外包开发:xkk9866@yeah.net 环境与设备 系统:window 设备:HUAWEI WATCH 3 Pro 开发工具:DevEco St…...

Vue(十九):ElementUI 扩展实现树形结构表格组件的勾父选子、半勾选、过滤出半勾选节点功能

效果 原理分析 从后端获取数据后,判断当前节点是否勾选,从而判断是否勾选子节点勾选当前节点时,子节点均勾选全勾选与半勾选与不勾选的样式处理全勾选和全取消勾选的逻辑筛选出半勾选的节点定义变量 import {computed, nextTick, reactive, ref} from vue; import {tree} f…...

SpringBoot RestTemplate 设置挡板

项目结构 代码 BaffleConfig /*** Description 记录配置信息* Author wjx* Date 2024/2/1 14:47**/ public interface BaffleConfig {// 是否开启挡板的开关public static boolean SWITCH true;// 文件根目录public static String ROOT_PATH "D:\\TIS\\mock";// …...

arcgis javascript api4.x加载非公开或者私有的arcgis地图服务

需求&#xff1a; 加载arcgis没有公开或者私有的地图服务&#xff0c;同时还想实现加载时不弹出登录窗口 提示&#xff1a;​ 下述是针对独立的arcgis server&#xff0c;没有portal的应用场景&#xff1b; 如果有portal可以参考链接&#xff1a;https://mp.weixin.qq.com/s/W…...

2024年美赛数学建模A题思路分析 - 资源可用性和性别比例

# 1 赛题 问题A&#xff1a;资源可用性和性别比例 虽然一些动物物种存在于通常的雄性或雌性性别之外&#xff0c;但大多数物种实质上是雄性或雌性。虽然许多物种在出生时的性别比例为1&#xff1a;1&#xff0c;但其他物种的性别比例并不均匀。这被称为适应性性别比例的变化。…...

UDP和TCP的区别和联系

传输层&#xff1a;定义传输数据的协议端口号&#xff0c;以及流控和差错校验。 协议有&#xff1a;TCP、UDP等 UDP和TCP的主要区别包括以下几个方面&#xff1a; 1、连接性与无连接性&#xff1a;TCP是面向连接的传输控制协议&#xff0c;而UDP提供无连接的数据报服务。这意…...

delete、truncate和drop区别

一、从执行速度上来说 drop > truncate >> DELETE 二、从原理上讲 1、DELETE DELETE from TABLE_NAME where xxx1.1、DELETE属于数据库DML操作语言&#xff0c;只删除数据不删除表的结构&#xff0c;会走事务&#xff0c;执行时会触发trigger&#xff08; 触发器…...