最新!2024顶级SCI优化!TTAO-CNN-BiGRU-MSA三角拓扑聚合优化、双向GRU融合注意力的多变量回归预测程序!
适用平台:Matlab 2023版及以上
TTOA三角聚合优化算法,将在2024年3月正式发表在中科院1区顶级SCI期刊《Expert Systems with Applications》上。
该算法提出时间极短,目前以及近期内不会有套用这个算法的文献。新年伊始,尽快拿下!

我们利用该创新性极高的优化算法对我们的CNN-BiGRU-Attention时序和空间特征结合-融合注意力机制的回归预测程序代码中的超参数进行优化,构成TTAO-CNN-BiGRU-MSA多变量回归预测模型.
文献解读:这个算法的启发来源是类似三角形的拓扑学性质。名为Triangulation Topology Aggregation Optimizer,TTAO)的新型数学元启发算法中,每个三角形拓扑单元表示一个搜索个体。TTAO算法通过聚合形成不同大小的类似三角形拓扑单元,以作为基本的进化单元。与其他元启发算法不同,TTAO算法提出了一种新的进化指导模式,主要依靠每个三角形单元中的最佳个体指导单元内个体的进化。因此,这种进化种群不仅依赖于全局引导的优秀个体,还吸收了每个单元中最佳个体的有效正向信息,有助于解决复杂优化问题,克服传统方法在全局搜索时进入局部极值的缺点。接下来,文章通过与其它对比算法:HHO ;SCSO;SAO;BWO;AOA等测试,验证了TTAO算法具有更强的收敛性能。在CEC2017函数和8个工程问题上评估了其优化性能。实验结果表明,TTAO算法在30维CEC2017函数上具有优越的收敛性和稳定性。

原理:许多领域通常将研究对象划分为三角形拓扑单元,并建立相关模型进行识别和分析:如金字塔,三角尺等。

在有限或无限维空间中,三角形拓扑可以被视为二维子空间的子图。与其他拓扑相比,三角形在某些封闭系统中更简单、更稳定。

TTAO算法主要通过以下两个阶段进行优化过程:
-
①不同单元之间的聚合
-
②相似三角形单元内的聚合
在这个过程中,不断在搜索空间中生成新的顶点,并用它们构建不同大小的相似三角形。TTAO算法将每个三角形视为具有四个个体的基本进化单元,即三角形的三个顶点和一个内部随机顶点。聚合的核心是将具有优良特性的顶点分组在一起。具体来说,TTAO算法通过聚合在不同拓扑单元之间或内部收集具有正向信息的顶点,不断构建相似三角形。

优化步骤:
-
算法通过迭代进化,在搜索空间中不断生成新的顶点,以构建不同大小的相似三角形。
-
每个三角形都被视为一个基本进化单元,包含四个搜索个体,即三角形的三个顶点和一个内部随机顶点。
-
TTAO算法的核心是聚集具有优越特性的顶点。具体而言,TTAO算法通过聚集来自不同拓扑单元的优秀个体信息,以创建新的可行解。
-
算法通过三个阶段的更新过程来实现全局搜索和局部挖掘:生成三角拓扑单元、通用聚集和局部聚集。

构成的TTAO-CNN-BiGRU-MSA多变量回归预测模型的创新性在于以下几点:
TTAO算法区别于传统智能算法的创新性:
①细胞聚类策略:TTAO 算法采用三角形拓扑单元展开优化过程,每个三角形拓扑单元具有一个顶点,这些顶点分别代表了搜索个体。这种细胞聚类策略使得 TTAO 算法能够更好地挖掘局部和全局信息。
②两级聚合策略:TTAO 算法采用了两级聚合策略:广义聚合和局部聚合。广义聚合主要关注全局探索,通过不同三角形拓扑单元间的信息交换来找到更有希望的位置;局部聚合则使得每个单元内的信息得到有效开发,确保准确地探索局部区域。
③自适应策略:TTAO 算法将上一代的有效信息自适应地继承下来,从而保持种群的多样性。这种自适应策略使得 TTAO 算法能够快速收敛到全局最优解。
④个体引导进化策略:TTAO算法提出了一种新的关键个体引导进化策略,使得该算法不仅依赖于精英个体的全局引导进化,还吸收了每个单元中最佳个体的积极正向信息。
优化套用—基于三角拓扑聚合优化算法(TTAO)、卷积神经网络(CNN)和双向门控循环单元网络(BiGRU)融合注意力机制(Multi-Head Self Attention,MSA)的超前24步多变量时间序列回归预测算法TTOA-CNN-BiGRU-MSA:

功能:
1、多变量特征输入,单序列变量输出,输入前一天的特征,实现后一天的预测,超前24步预测。
2、通过TTAO优化算法优化学习率、卷积核大小、神经元个数,这3个关键参数,以最小MAPE为目标函数。
3、提供损失、RMSE迭代变化极坐标图;网络的特征可视化图;测试对比图;适应度曲线(若首轮精度最高,则适应度曲线为水平直线)。
4、提供MAPE、RMSE、MAE等计算结果展示。
适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。
数据集格式:
前一天18个气象特征,采样时间为24小时,输出为第二天的24小时的功率出力,也就是18×24输入,1×24输出,一共有75个这样的样本。

预测值与实际值对比;训练特征可视化:

训练误差曲线的极坐标形式(误差由内到外越来越接近0);适应度曲线(误差逐渐下降)

误差评估:


TTAO部分核心代码:
完整代码:https://mbd.pub/o/bread/ZZqZlZ1y
% 三角拓扑聚合优化器
function [fbest,Xbest,Convergence_curve,BestPred,bestNet,bestInfo]=TTAOtest(PopSize,T,Low,Up,Dim,fobj)N=floor(PopSize/3); % 初始化N/3个个体。
X1=rand(N,Dim).*(Up-Low)+Low;
t=1;
while t<T+1%% 形成三角拓扑单元l=9*exp(-t/T);% 三角拓扑单元的大小。for i=1:Ntheta=rand(1,Dim)*pi;h1=cos(theta);h2=cos(theta+pi/3);X2(i,:)=X1(i,:)+l*h1;X3(i,:)=X1(i,:)+l*h2;endX2 = max(X2,Low);X2 = min(X2,Up);X3 = max(X3,Low);X3 = min(X3,Up);r1=rand;r2=rand;X4=r1*X1+r2.*X2+(1-r1-r2)*X3;X4 = max(X4,Low);X4 = min(X4,Up);for i=1:N[X1_fit(i), value1{i},Net1{i},Info1{i}] =fobj(X1(i,:));[X2_fit(i), value2{i},Net2{i},Info2{i}] =fobj(X2(i,:));[X3_fit(i), value3{i},Net3{i},Info3{i}] =fobj(X3(i,:));[X4_fit(i), value4{i},Net4{i},Info4{i}] =fobj(X4(i,:));endX=[X1 X2 X3 X4];fit=[X1_fit;X2_fit;X3_fit;X4_fit];value = [value1; value2; value3; value4];Net = [Net1; Net2; Net3; Net4];Info = [Info1; Info2; Info3; Info4];[X_sort,index]=sort(fit);%% 在每个三角拓扑单元中找到最优点和次优点。for i=1:NX_best_1(i,:)=X(i,(index(1,i)-1)*Dim+1:index(1,i)*Dim);X_best_2(i,:)=X(i,(index(2,i)-1)*Dim+1:index(2,i)*Dim);endbest_fit_1=X_sort(1,:);best_fit_2=X_sort(2,:);sorted_value(:, 1) = value(index(:, 1), 1);sorted_value(:, 2) = value(index(:, 2), 2);best_value_1 = sorted_value(1,:);best_value_2 = sorted_value(2,:);sorted_Net(:, 1) = Net(index(:, 1), 1);sorted_Net(:, 2) = Net(index(:, 2), 2);best_Net_1 = sorted_Net(1,:);best_Net_2 = sorted_Net(2,:);sorted_Info(:, 1) = Info(index(:, 1), 1);sorted_Info(:, 2) = Info(index(:, 2), 2);best_Info_1 = sorted_Info(1,:);best_Info_2 = sorted_Info(2,:);%% 通用聚合for i=1:Nr=rand(1,Dim);X_new=X_best_1;X_new(i,:)=[];l1=randi(N-1);X_G(i,:)=(r.*X_best_1(i,:)+(ones(1,Dim)-r).*X_new(l1,:));X_G(i,:) = max(X_G(i,:),Low);X_G(i,:) = min(X_G(i,:),Up);[X_fit_G(i), valueG{i},NetG{i},InfoG{i}]=fobj(X_G(i,:));if X_fit_G(i)<best_fit_1(i)X_best_1(i,:)=X_G(i,:);best_fit_1(i)=X_fit_G(i);best_value_1{i}=valueG{i};best_Net_1{i}=NetG{i};best_Info_1{i}=InfoG{i};elseif X_fit_G(i)<best_fit_2(i)X_best_2(i,:)=X_G(i,:);best_value_2{i}=valueG{i};best_Net_2{i}=NetG{i};best_Info_2{i}=InfoG{i};endend%% 局部聚合for i=1:Na=(exp(1)-(exp(1))^3)/(T-1);b=(exp(1))^3-a;alpha=log(a*t+b);X_C(i,1:Dim)=X_best_1(i,1:Dim)+alpha*(X_best_1(i,1:Dim)-X_best_2(i,1:Dim));X_C(i,:) = max(X_C(i,:),Low);X_C(i,:) = min(X_C(i,:),Up);[X_fit_C(i), valueC{i},NetC{i},InfoC{i}]=fobj(X_C(i,:));if X_fit_C(i)<best_fit_1(i)X_best_1(i,:)=X_C(i,:);best_fit_1(i)=X_fit_C(i);best_value_1{i}=valueC{i};best_Net_1{i}=NetC{i};best_Info_1{i}=InfoC{i};endend%% N00=PopSize-N*3;if N00~=0X00=rand(PopSize-N*3,Dim).*(Up-Low)+Low;for i=1:N00[X00_fit,value00{i},Net00{i},Info00{i}]=fobj(X00(i,:));endX_1_0=[X_best_1;X00];X_1_0_fit=[best_fit_1,X00_fit];value_1_0=[best_value_1;value00];Net_1_0=[best_Net_1;Net00];Info_1_0=[best_Info_1;Info00];[~,index01]=sort(X_1_0_fit);X_best_1=X_1_0(index01(1:N),:);best_value_1=value_1_0(index01(1:N),:);best_Net_1=Net_1_0(index01(1:N),:);best_Info_1=Info_1_0(index01(1:N),:);best_fit_1=X_1_0_fit(index01(1:N));endX1=X_best_1;%% 前N/3个个体作为下一次迭代的初始种群。
部分图片来源于网络,侵权联系删除!
欢迎感兴趣的小伙伴“复制代码上方链接”或“联系小编”获得完整版代码哦~,关注小编会继续推送更有质量的学习资料、文章程序代码~
相关文章:
最新!2024顶级SCI优化!TTAO-CNN-BiGRU-MSA三角拓扑聚合优化、双向GRU融合注意力的多变量回归预测程序!
适用平台:Matlab 2023版及以上 TTOA三角聚合优化算法,将在2024年3月正式发表在中科院1区顶级SCI期刊《Expert Systems with Applications》上。 该算法提出时间极短,目前以及近期内不会有套用这个算法的文献。新年伊始,尽快拿下…...
Flink SQL Client 安装各类 Connector、组件的方法汇总(持续更新中....)
一般来说,在 Flink SQL Client 中使用各种 Connector 只需要该 Connector 及其依赖 Jar 包部署到 ${FLINK_HOME}/lib 下即可。但是对于某些特定的平台,如果 AWS EMR、Cloudera CDP 等产品会有所不同,主要是它们中的某些 Jar 包可能被改写过&a…...
React18-模拟列表数据实现基础表格功能
文章目录 分页功能分页组件有两种接口参数分页类型用户列表参数类型 模拟列表数据分页触发方式实现目录 分页功能 分页组件有两种 table组件自带分页 <TableborderedrowKey"userId"rowSelection{{ type: checkbox }}pagination{{position: [bottomRight],pageSi…...
MySQL查询数据(十)
MySQL查询数据(十) 一、SELECT基本查询 1.1 SELECT语句的功能 SELECT 语句从数据库中返回信息。使用一个 SELECT 语句,可以做下面的事: **列选择:**能够使用 SELECT 语句的列选择功能选择表中的列,这些…...
AJAX-常用请求方法和数据提交
常用请求方法 请求方法:对服务器资源,要执行的操作 axios请求配置 url:请求的URL网址 method:请求的方法,如果是GET可以省略;不用区分大小写 data:提交数据 axios({url:目标资源地址,method…...
2024美国大学生数学建模竞赛美赛B题matlab代码解析
2024美赛B题Searching for Submersibles搜索潜水器 因为一些不可抗力,下面仅展示部分代码(很少部分部分)和部分分析过程,其余代码看文末 Dthxlsread(C:\Users\Lenovo\Desktop\Ionian.xlsx); DpDth(:,3:5); dy0.0042; dx0.0042; …...
【DouYing Desktop】
I) JD 全日制大专及以上学历; 2. 3年以上的IT服务支持相关工作经验 3. 有较强的桌面相关trouble shooting与故障解决能力,能够独立应对各类型桌面问题; 4. 具备基础的网络、系统知识,能够独立解决常见的网络、系统等问题…...
正则表达式与文本处理工具
目录 引言 一、正则表达式基础 (一)字符匹配 1.基本字符 2.特殊字符 3.量词 4.边界匹配 (二)进阶用法 1.组与引用 2.选择 二、命令之-----grep (一)基础用法 (二)高级用…...
IDEA中的Run Dashboard
Run Dashboard是IntelliJ IDEA中的工具【也就是View中的Services】,提供一个可视化界面,用于管理控制应用程序的运行和调试过程。 在Run DashBoard中,可以看到所有的运行配置,以及每个配置的运行状态(正在运行…...
【力扣白嫖日记】SQL
前言 练习sql语句,所有题目来自于力扣(https://leetcode.cn/problemset/database/)的免费数据库练习题。 今日题目: 1407.排名靠前的旅行者 表:Users 列名类型idintnamevarchar id 是该表中具有唯一值的列。name …...
自动化报告pptx-python|高效通过PPT模版制造报告(三)
这是自动化报告学习的第三篇了,前面两篇分别是: 自动化报告的前奏|使用python-pptx操作PPT(一)自动化报告pptx-python|如何将pandas的表格写入PPTX(二)本篇是逼着笔者看到JoStudio 大佬自己写的一个jojo-office 库,基于pptx-python开发成一套试用office软件的依赖,非…...
Linux升级openssh的解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读 YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结 OLOv5-第Y2周:训练自己的数据集) YOLOv5白皮书-第Y3周:yolov5s.…...
C++ pair+map+set+multimap+multiset+AVL树+红黑树(深度剖析)
文章目录 1. 前言2. 关联式容器3. pair——键值对4. 树形结构的关联式容器4.1 set4.1.1 set 的介绍4.1.2 set 的使用 4.2 map4.2.1 map 的介绍4.2.2 map 的使用 4.3 multiset4.3.1 multiset 的介绍4.3.2 multiset 的使用 4.4 multimap4.4.1 multimap 的介绍4.4.2 multimap 的使…...
指针的学习1
目录 什么是指针? 野指针 造成野指针的原因: 如何避免野指针? 内存和指针 如何理解编址? 指针变量和地址 取地址操作符& 指针变量和解引用操作符 指针变量 如何拆解指针类型? 指针变量的大小 指针变量…...
c++:敲桌子
先输出1-100数字,从100个数字中找到这些特殊数字改为敲桌子。 特殊数字:1.7的倍数 2.十位数上有7 3.个位数上有7 #include<iostream> using namespace std; int main() {for (int i 1; i < 100; i) {if (i / 10 7 || i % 10 7|| i % 7 0)…...
Linux中判断文件系统的方法
文章目录 Linux中判断文件系统的方法1.使用mount命令2.使用blkid命令3.使用file命令4.使用fstab文件5.使用df命令(这个用的比较多)6.使用fsck命令7.使用lsblk命令(推荐-简单好用) Linux中判断文件系统的方法 1.使用mount命令 # 这样查看的只有已经挂载…...
聊聊ClickHouse MergeTree引擎的固定/自适应索引粒度
前言 我们在刚开始学习ClickHouse的MergeTree引擎时,就会发现建表语句的末尾总会有SETTINGS index_granularity 8192这句话(其实不写也可以),表示索引粒度为8192。在每个data part中,索引粒度参数的含义有二…...
20240202在WIN10下使用whisper.cpp
20240202在WIN10下使用whisper.cpp 2024/2/2 14:15 【结论:在Windows10下,确认large模式识别7分钟中文视频,需要83.7284 seconds,需要大概1.5分钟!效率太差!】 83.7284/4200.1993533333333333333333333333…...
【Linux】基本指令(上)
🦄个人主页:修修修也 🎏所属专栏:Linux ⚙️操作环境:Xshell (操作系统:CentOS 7.9 64位) 目录 Xshell快捷键 Linux基本指令 ls指令 pwd指令 cd指令 touch指令 mkdir指令 rmdir指令/rm指令 结语 Xshell快捷键 AltEnter 全屏/取消全屏 Tab 进…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
java 实现excel文件转pdf | 无水印 | 无限制
文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
