【产业实践】使用YOLO V5 训练自有数据集,并且在C# Winform上通过onnx模块进行预测全流程打通
使用YOLO V5 训练自有数据集,并且在C# Winform上通过onnx模块进行预测全流程打通
效果图

背景介绍
当谈到目标检测算法时,YOLO(You Only Look Once)系列算法是一个备受关注的领域。YOLO通过将目标检测任务转化为一个回归问题,实现了快速且准确的目标检测。以下是YOLO的基本特性和发展历程:

基本特性:
速度: YOLO算法的一大优势是其处理速度。在检测过程中,YOLO一次性预测出所有边界框的位置和类别,而不需要像R-CNN系列算法那样进行多阶段的区域提议和分类。这种单阶段的目标检测方法大大提高了检测速度。
精度:尽管YOLO在速度上具有优势,但其精度相对较低。这主要是因为YOLO在预测时使用的是网格单元,对于某些小目标或大目标可能会出现预测不准确的情况。
可定制性: YOLO算法具有较强的可定制性。由于其核心思想是将目标检测任务转化为回归问题,因此可以通过调整回归的参数和阈值来改变检测的精度和召回率。此外,也可以通过修改网络结构来适应不同的任务需求。
发展历程:
YOLO v0: YOLO的初始版本采用基本的卷积神经网络结构进行特征提取,并将目标检测任务转化为一个回归问题。该版本虽然简单,但在当时取得了较好的效果。
YOLO v1: YOLO v1引入了所谓的"锚框"的概念,通过预先定义的锚框来预测目标的位置和大小。这种方法在一定程度上提高了预测的精度。
YOLO v2: YOLO v2在v1的基础上进行了改进,采用了更深的卷积神经网络结构进行特征提取,并改进了回归方法。此外,还引入了多尺度特征融合技术,以提高对不同大小目标的检测能力。
YOLO v3: YOLO v3在网络结构和回归方法上进行了较大的改进。在网络结构上,引入了残差连接和瓶颈结构,提高了特征提取的能力。在回归方法上,采用了更精细的网格划分和多尺度预测,提高了预测精度。
YOLO v4: YOLO v4在网络结构、特征提取、损失函数等方面进行了全面的改进。在
相关文章:
【产业实践】使用YOLO V5 训练自有数据集,并且在C# Winform上通过onnx模块进行预测全流程打通
使用YOLO V5 训练自有数据集,并且在C# Winform上通过onnx模块进行预测全流程打通 效果图 背景介绍 当谈到目标检测算法时,YOLO(You Only Look Once)系列算法是一个备受关注的领域。YOLO通过将目标检测任务转化为一个回归问题,实现了快速且准确的目标检测。以下是YOLO的基…...
【操作系统】HeapByteBuffer和DirectByteBuffer的区别
DirectByteBuffer和HeapByteBuffer是Java NIO中ByteBuffer的两种实现方式。 HeapByteBuffer是在Java堆上分配的字节缓冲区,它使用数组来存储数据。HeapByteBuffer的优点是它具有良好的兼容性和可移植性,且在大多数情况下性能表现良好。它适用于大部分的…...
C++并发编程 -2.线程间共享数据
本章就以在C中进行安全的数据共享为主题。避免上述及其他潜在问题的发生的同时,将共享数据的优势发挥到最大。 一. 锁分类和使用 按照用途分为互斥、递归、读写、自旋、条件变量。本章节着重介绍前四种,条件变量后续章节单独介绍。 由于锁无法进行拷贝…...
Kubernetes-资源清单
一、k8s中的资源 什么是资源清单 我们跟kubernetes集群进行交互的时候,我们需要给K8S集群传输数据,传输信息,K8S才能按照我们的要求来运行,这个传输的文件,基本上都会通过资源清单进行传递。资源清单是我们跟集群进行…...
ABAP 笔记--内表结构不一致,无法更新数据库MODIFY和UPDATE
目录 ABAP 笔记内表结构不一致,无法更新数据库MODIFY和UPDATE ABAP 笔记 内表结构不一致,无法更新数据库 MODIFY和UPDATE 如果是使用MODIFY或者UPDATE...
机器学习-3降低损失(Reducing Loss)
机器学习-3降低损失(Reducing Loss) 学习内容来自:谷歌ai学习 https://developers.google.cn/machine-learning/crash-course/framing/check-your-understanding?hlzh-cn 本文作为学习记录1.降低损失:迭代方法 迭代学习 下图展示了机器学习算法用于训…...
蓝桥杯备战(AcWing算法基础课)-高精度-减-高精度
目录 前言 1 题目描述 2 分析 2.1 第一步 2.2 第二步 3 代码 前言 详细的代码里面有自己的理解注释 1 题目描述 给定两个正整数(不含前导 00),计算它们的差,计算结果可能为负数。 输入格式 共两行,每行包含一…...
AspNet web api 和mvc 过滤器差异
最近在维护老项目。定义个拦截器记录接口日志。但是发现不生效 最后发现因为继承的 ApiController不是Controller 只能用 System.Web.Http下的拦截器生效。所以现在总结归纳一下 Web Api: System.Web.Http.Filters.ActionFilterAttribute 继承该类 Mvc: System.Web.Mvc.Ac…...
HarmonyOS应用/服务发布:打造多设备生态的关键一步
目前 前言HarmonyOS 应用/服务发布的重要性使用HarmonyOS 构建跨设备的应用生态前期准备工作简述发布流程生成签名文件配置签名信息编译构建.app文件上架.app文件到AGC结束语 前言 随着智能设备的快速普及和多样化,以及编程语言的迅猛发展,构建一个无缝…...
【数据结构】双向带头循环链表实现及总结
简单不先于复杂,而是在复杂之后。 文章目录 1. 双向带头循环链表的实现2. 顺序表和链表的区别 1. 双向带头循环链表的实现 List.h #pragma once #include <stdio.h> #include <assert.h> #include <stdlib.h> #include <stdbool.h>typede…...
创建自己的Hexo博客
目录 一、Github新建仓库二、支持环境安装Git安装Node.js安装Hexo安装 三、博客本地运行本地hexo文件初始化本地启动Hexo服务 四、博客与Github绑定建立SSH密钥,并将公钥配置到github配置Hexo与Github的联系检查github链接访问hexo生成的博客 一、Github新建仓库 登…...
音箱、功放播放HDMI音频解决方案之HDMI音频分离器HHA
HDMI音频分离器HHA简介 HDMI音频分离器HHA具有一路HDMI信号输入,转换成一路HDMI信号、一路5.1光纤音频信号、一路5.1 SPDIF/同轴音频信号和一路模拟左右声道立体声信号输出,同时还支持EDID存储及兼容HDCP功能;分辨率最高支持1920*1080p&#…...
天猫数据分析:2023年坚果炒货市场年销额超71亿,混合坚果成多数消费者首选
近年来,随着人们生活水平和健康意识的提升,在休闲零食市场中,消费者们也越来越关注食品的营养价值,消费者这一消费偏好的转变也为坚果炒货食品行业带来了发展契机。 整体来看,坚果炒货市场的体量较大。根据鲸参谋电商…...
YouTrack 用户登录提示 JIRA 错误
就算输入正确的用户名和密码,我们也得到了下面的错误信息: youtrack Cannot retrieve JIRA user profile details. 解决办法 出现这个问题是因为 YouTrack 在当前的系统重有 JIRA 的导入关联。 需要把这个导入关联取消掉。 找到后台配置的导入关联&a…...
题目 1163: 排队买票
题目描述: 有M个小孩到公园玩,门票是1元。其中N个小孩带的钱为1元,K个小孩带的钱为2元。售票员没有零钱,问这些小孩共有多少种排队方法,使得售票员总能找得开零钱。注意:两个拿一元零钱的小孩,他们的位置互…...
【lesson9】高并发内存池Page Cache层释放内存的实现
文章目录 Page Cache层释放内存的流程Page Cache层释放内存的实现 Page Cache层释放内存的流程 如果central cache释放回一个span,则依次寻找span的前后page id的没有在使用的空闲span,看是否可以合并,如果合并继续向前寻找。这样就可以将切…...
Java基础面试题-6day
I/O流基础知识总结 (1) io即输入输出流, 如何区分输入还是输入流 以内存为中介,当我们是将数据存储到内存即为输入,反之存储到外部存储器,即为输出 在Java中分输入输出流,根据数据处理又可以分…...
【Oracle 集群】RAC知识图文详细教程(三)--RAC工作原理和相关组件
RAC 工作原理和相关组件 OracleRAC 是多个单实例在配置意义上的扩展,实现由两个或者多个节点(实例)使用一个共同的共享数据库(例如,一个数据库同时安装多个实例并打开)。在这种情况下,每一个单独…...
二级C语言笔试2
(总分100,考试时间90分钟) 一、选择题 下列各题A)、B)、C)、D)四个选项中,只有一个选项是正确的。 1. 下列叙述中正确的是( )。 A) 算法的效率只与问题的规模有关,而与数据的存储结构无关 B) 算法的时间复杂度是指执行算法所需要的计算工作量 …...
如何计算两个指定日期相差几年几月几日
一、题目要求 假定给出两个日期,让你计算两个日期之间相差多少年,多少月,多少天,应该如何操作呢? 本文提供网页、ChatGPT法、VBA法和Python法等四种不同的解法。 二、解决办法 1. 网页计算法 这种方法是利用网站给…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...
