在Meteor Lake上测试基于Stable Diffusion的AI应用

上个月刚刚推出的英特尔新一代Meteor Lake CPU,预示着AI PC的新时代到来。AI PC可以不依赖服务器直接在PC端处理AI推理工作负载,例如生成图像或转录音频。这些芯片的正式名称为Intel Core Ultra处理器,是首款配备专门用于处理人工智能任务的 NPU(神经处理单元)的芯片。
为了更好地了解Meteor Lake CPU,我们测试了英特尔适用于 Audacity 和 GIMP(开源音频和图像编辑器)的 OpenVINO 插件和其它相关的AI应用,包含仅 CPU 模式、NPU 模式和 GPU 模式下运行了所有测试。我们进行的测试有:
- OpenVINO Stable Diffusion:在 GIMP 中生成图像。
- OpenVINO Noise Reduction:消除 Audacity 中的背景噪音。
- OpenVINO Music Generation: Audacity 中的文本转音乐功能。
- OpenVINO Whisper Transcription:在 Audacity 中将音频转录为文本。
OpenVINO™是英特尔针对自家硬件平台开发的一套深度学习工具库,包含推断库,模型优化等等一系列与深度学习模型部署相关的功能。OpenVINO™工具包是用于快速开发应用程序和解决方案的综合工具包,可解决各种任务,包括模拟人类视觉,自动语音识别,自然语言处理,推荐系统等。该工具包基于最新一代的人工神经网络,包括卷积神经网络(CNN),循环和基于注意力的网络,可在英特尔®硬件上扩展计算机视觉和非视觉工作负载,从而最大限度地提高性能。它通过从边缘到云的高性能,人工智能和深度学习推理来加速应用程序。OpenVINO 插件专门识别 Meteor Lake 笔记本电脑的 NPU 并将其作为设备选项呈现。值得注意的是,虽然 OpenVINO 软件/插件可以在任何 x86 硬件上运行,最新的几个版本甚至加入了对Arm平台的支持,但它们专门针对 Intel CPU 和 GPU 进行了优化所以会有更好的性能。
测试 1:基于Stable Diffusion的GIMP 图像生成
为 GIMP 安装英特尔的 OpenVINO 插件是一项相对复杂的任务,本文不包含如何在GIMP里安装OpenVINO插件,具体的安装过程我会再写另外一篇博文来阐述,也可参阅此Github项目。插件安装设置完成后,GIMP 将具有四个 OpenVINO 插件:Semantic-Segmentation、Style-Transfer、Super-Resolution和Stable-Diffusion。
Stable-Diffusion for GIMP 是一个图像生成器,需要 十几 秒到几分钟才能输出图像。在Stable-Diffusion里可以选择多种不同的模型,我们在测试中选择了 SD_1_5_square_int8,因为它是目前能支持Meteor Lake NPU 作为输出设备的模型之一。测试中发现SD_1_5_square_int8 的输出有点难看,因为它给你的看起来像是凌乱的手指画,而不是逼真的图像,但重点是看看它完成每项任务的速度有多快。
在使用Stable-Diffusion SD_1_5_square_int8 模型中,我们可以在Meteor Lake上选择四种不同的设备来处理输出的不同部分:Text部分使用GPU,Unet+使用GPU,Unet-使用NPU, VAE使用CPU。所有四个设备可以是相同的,也可以切换它们。
当我们同时使用GPU和NPU时,在Meteor Lake 笔记本电脑上生成图像仅花费 16 秒。当我们单独使用 GPU 时,这些时间增加了几秒,而当我们使用 NPU 时,这些时间几乎增加了一倍(31秒)。单独使用 CPU 的时间是最高的,分别为 59.5 秒和 61 秒。
下图是使用SD_1_5_square_int8 模型驾驶汽车的猫时,会得到下图这样的结果。如果想要更好看的输出,则需要使用SD_1_5_square 等模型,它可以生成逼真的图像,但是这个模型目前还没有NPU的支持。
测试 2:Whisper Transcription
Audacity OpenVINO Whisper Transcription 插件将使用您的 CPU、GPU 或 NPU将剪辑中的语音转换为带有时间戳的文本文件。我们在测试中使用 Open AI 的 Whisper AI基本转录模型,因为这是插件内置的模型。两台Meteor Lake测试平台完成的时间为48.8秒和52.1秒。考虑到源材料的长度是原来的 23 倍以上,这已经相当不错了。
测试 3:Audacity OpenVINO Noise Reduction
Audacity 插件 OpenVINO 噪声抑制可消除剪辑中的背景噪声。因此,我们选取了用于转录的23 分钟音频片段,并在其上运行了噪声抑制插件。运行噪声抑制插件时,可以选择 CPU、GPU 或 NPU 作为处理设备。但每次转录只能使用一个设备,因此不会混合 GPU 和 NPU 或 CPU 和 GPU。两台Meteor Lake测试机器的完成时间分别为934秒和1054秒。
这是一个相当 CPU 密集型的工作负载,因为我们看到处于 CPU 模式的笔记本电脑的工作负载最高。在 NPU 上运行并没有什么帮助。 Swift Go 和 IdeaPad Pro 5i 在 NPU 模式下运行速度都非常慢。
测试 4:OpenVINO Music Generation
Audacity 的其他有趣的 OpenVINO 插件之一使用 Stable Audio(Stability AI 的音乐模型)根据文本提示生成曲调。在我们的测试中,要求一首 30 秒的歌曲,提示为“爵士乐”,6 个插值步骤和 20 个推理步骤。这里有五种不同的设备设置:Text Encoder Device、Unet + Device、Unet – Device、VAE Decoder Device和 VAE Encoder Device。您可以选择 CPU、GPU 或(在 Unet + / – 上)NPU。 两台Meteor Lake的测试成绩分别为55秒和57秒。
NPU 减轻 CPU 负担
NPU还有另外一个更大的价值在我们前面的测试中并未体现出来,那就是它如何减轻 CPU 的负载。例如,当我们在 Acer Swift 14 Go 上运行 NPU 专用工作负载并打开任务管理器时,CPU 利用率仅为 2%,而 NPU 利用率为 100%。
但当我在 CPU 模式下运行相同的工作负载时,处理器在任务期间被固定在 60%。
由此可见,当把AI的工作负载放到NPU上执行时,能极大地释放CPU的工作量。如果我们不插电,依靠 NPU 可能会节省电量以延长电池寿命。此外,随着 NPU 承担 AI 工作负载,CPU 可以自由地做其他事情。
作者的个人Blog(HY's Blog):https://blog.yanghong.dev
相关文章:
在Meteor Lake上测试基于Stable Diffusion的AI应用
上个月刚刚推出的英特尔新一代Meteor Lake CPU,预示着AI PC的新时代到来。AI PC可以不依赖服务器直接在PC端处理AI推理工作负载,例如生成图像或转录音频。这些芯片的正式名称为Intel Core Ultra处理器,是首款配备专门用于处理人工智能任务的 …...
情人节心动礼物:共度情人节美好时刻的礼物推荐
情人节,这个充满浪漫与爱意的特殊日子,总是让人心跳加速,期待着与爱人共享甜蜜时光。在这一天,送出一份精心挑选的礼物,不仅能够表达你对另一半无尽的爱意,更能让这份爱升华,成为你们爱情故事中…...
远程手机搭建Termux环境,并通过ssh连接Termux
背景 Termux只能通过鼠标点击,无法使用电脑键盘,输入速度很慢,你想通过ssh 连接Termux,获得友好体验搞了个云手机,想像普通手机那样充当服务器想把自己的手机公开到局域网中供同事调试想把自己的模拟器公开到局域网中…...
基于EdgeWorkers的边缘应用如何进行单元测试?
随着各行各业数字化转型的持续深入,越来越多企业开始选择将一些应用程序放在距离最终用户更近的边缘位置来运行,借此降低延迟,提高应用程序响应速度,打造更出色的用户体验。 相比传统集中部署和运行的方式,这种边缘应…...
【linux】校招中的“熟悉linux操作系统”一般是指达到什么程度?
这样,你先在网上找一套完整openssh升级方案(不是yum或apt的,要源码安装的),然后在虚拟机上反复安装测试,直到把他理解了、背下来。 面试的时候让你简单说说linux命令什么的,你就直接把这个方案…...
【CSS系列】常用容易忽略的css
user-select user-select 是一个 CSS 属性,用于控制用户是否可以选择文本。通过设置 user-select 的值,可以决定用户是否可以选择元素中的文本,以及如何选择文本。 auto:默认值。浏览器可以选择文本。none:用户不能选…...
Java 数据结构 二叉树(二)红黑树
目录 数据结构图-树 简介 规则 旋转 重新着色 红黑树构建过程 前言-与正文无关 生活远不止眼前的苦劳与奔波,它还充满了无数值得我们去体验和珍惜的美好事物。在这个快节奏的世界中,我们往往容易陷入工作的漩涡,忘记了停下脚步…...
React18-完成弹窗封装
弹框封装 用法 // 创建 userRef.current?.open(create) // 修改 userRef.current?.open(edit,values){/* 创建用户 */} <CreateUser mRef{userRef} update{} />组件暴露open方法 文档地址:https://react.dev/reference/react/useImperativeHandle useIm…...
蓝桥杯2024/1/31-----底层测试模板
和之前一样建好工程文件夹,里边包含User(放工程文件,mian.c)、Driver(存放底层文件如Led.c,Led.h等) 新建的工程先搭建框架,可以先书写底层函数(此次书写了四个函数并包含…...
蓝桥杯备战(AcWing算法基础课)-高精度-乘-低精度
目录 前言 1 题目描述 2 分析 2.1 关键代码 2.2 关键代码分析 3 代码 前言 详细的代码里面有自己的理解注释 1 题目描述 给定两个非负整数(不含前导 00) A 和 B,请你计算 AB 的值。 输入格式 共两行,第一行包含整数 A&a…...
C++设计模式-里氏替换原则
里氏替换原则定义了继承规范。(封装、继承、多态) 定义1:类型S对象o1,类型T对象o2,o1换成o2时程序意图不变,那么S是T的子类。 定义2:使用子类不破坏父类的意图。 注意:如果子类不…...
compose LazyColumn + items没有自动刷新问题
val dataLists by remember { mutableStateOf(datas) } 数据更改后列表不刷新问题。 val dataLists by remember { mutableStateOf(datas) } LazyColumn(modifier Modifier.padding(top 5.dp)) {items(dataLists) {....}} 可以将mutableStateOf 改为mutableStateListOf解决…...
Java八大常用排序算法
1冒泡排序 对于冒泡排序相信我们都比较熟悉了,其核心思想就是相邻元素两两比较,把较大的元素放到后面,在一轮比较完成之后,最大的元素就位于最后一个位置了,就好像是气泡,慢慢的浮出了水面一样 Jave 实现 …...
编程笔记 html5cssjs 075 Javascript 常量和变量
编程笔记 html5&css&js 075 Javascript 常量和变量 一、JavaScript 变量二、JavaScript 常量三、示例:小结: 在JavaScript中,变量和常量是用来存储数据的占位符。它们的主要区别在于可变性:变量的值可以改变,而…...
题目 1159: 偶数求和
题目描述: 有一个长度为n(n<100)的数列,该数列定义为从2开始的递增有序偶数(公差为2的等差数列),现在要求你按照顺序每m个数求出一个平均值,如果最后不足m个,则以实际数量求平均值。编程输出该平均值序…...
呼吸灯--FPGA
目录 1.breath_led.v 2.tb_breath_led.v 呼吸灯就是从完全熄灭到完全点亮,再从完全点亮到完全熄灭。具体就是通过控制PWM的占空比控制亮灭程度。 绘制PWM波的步骤就是,首先灯是在第一个时钟周期保持高电平熄灭状态,在第二个时钟周期保持1/1…...
MySQL数据库①_MySQL入门(概念+使用)
目录 1. 数据库的概念 1.1 数据库的存储介质 1.2 主流数据库 2. MySQL的基本使用 2.1 链接数据库 2.2 服务器管理 2.3 数据库,服务器和表关系 2.4 简单MySQL语句 3. MySQL架构 4. SQL分类 5. 存储引擎 本篇完。 1. 数据库的概念 数据库是按照数据结构来…...
虚幻UE 特效-Niagara特效实战-魔法阵
回顾Niagara特效基础知识:虚幻UE 特效-Niagara特效初识 其他四篇实战:UE 特效-Niagara特效实战-烟雾、喷泉、 虚幻UE 特效-Niagara特效实战-火焰、烛火、 虚幻UE 特效-Niagara特效实战-雨天、 虚幻UE 特效-Niagara特效实战-眩晕。 本篇笔记记录了使用空模…...
Qt多语言翻译
Qt多语言翻译概述 Qt提供了非常简单易用的多语言翻译机制,其核心类为QTranslator.概括来说就是利用Qt的lupdate工具将项目中所有tr函数包裹的字符串提取到.ts文件中,然后使用Qt Linguist由专门的翻译人员对提取的.ts文件进行逐个单词短语的翻译工作. 翻译…...
Latex学习记录
目录 1.Latex各种箭头符号总结 2.[Latex]公式编辑,编号、对齐 3.Latex公式编号: 多行公式多编号,多行公式单编号 4.LaTex中输入空格以及换行 1.Latex各种箭头符号总结 箭头符号 - ➚ (piliapp.com)https://cn.piliapp.com/symbol/arrow/Latex各种箭头…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
