TensorFlow2实战-系列教程14:Resnet实战2
🧡💛💚TensorFlow2实战-系列教程 总目录
有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传
Resnet实战1
Resnet实战2
Resnet实战3
4、训练脚本train.py解读------创建模型
def get_model():model = resnet50.ResNet50()if config.model == "resnet34":model = resnet34.ResNet34()if config.model == "resnet101":model = resnet101.ResNet101()if config.model == "resnet152":model = resnet152.ResNet152()model.build(input_shape=(None, config.image_height, config.image_width, config.channels))model.summary()tf.keras.utils.plot_model(model, to_file='model.png')return model# create model
model = get_model()
调用get_model()函数构建模型
get_model()函数:
- 通过resnet50.py调用ResNet50类,构建ResNet50模型
- 如果在配置参数中设置的是"resnet34"、“resnet101”、“resnet152”,则会对应使用(resnet34.py调用ResNet34类,构建ResNet34模型)、(resnet101.py调用ResNet101类,构建ResNet101模型)、(resnet152.py调用ResNet152类,构建ResNet152模型)
- 准备模型以供训练或评估,
- 输出模型的概览
- 创建了模型的结构图,plot_model 函数从 Keras 工具包中生成模型的可视化表示,指定了保存路径
5、模型构建解析------models/resnet50.py
import tensorflow as tf
from models.residual_block import build_res_block_2
from config import NUM_CLASSESclass ResNet50(tf.keras.Model):def __init__(self, num_classes=NUM_CLASSES):super(ResNet50, self).__init__()self.pre1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='same')self.pre2 = tf.keras.layers.BatchNormalization()self.pre3 = tf.keras.layers.Activation(tf.keras.activations.relu)self.pre4 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)self.layer1 = build_res_block_2(filter_num=64, blocks=3)self.layer2 = build_res_block_2(filter_num=128, blocks=4, stride=2)self.layer3 = build_res_block_2(filter_num=256, blocks=6, stride=2)self.layer4 = build_res_block_2(filter_num=512, blocks=3, stride=2)self.avgpool = tf.keras.layers.GlobalAveragePooling2D()self.fc1 = tf.keras.layers.Dense(units=1000, activation=tf.keras.activations.relu)self.drop_out = tf.keras.layers.Dropout(rate=0.5)self.fc2 = tf.keras.layers.Dense(units=num_classes, activation=tf.keras.activations.softmax)def call(self, inputs, training=None, mask=None):pre1 = self.pre1(inputs)pre2 = self.pre2(pre1, training=training)pre3 = self.pre3(pre2)pre4 = self.pre4(pre3)l1 = self.layer1(pre4, training=training)l2 = self.layer2(l1, training=training)l3 = self.layer3(l2, training=training)l4 = self.layer4(l3, training=training)avgpool = self.avgpool(l4)fc1 = self.fc1(avgpool)drop = self.drop_out(fc1)out = self.fc2(drop)return out
class ResNet50(tf.keras.Model),这个类定义了ResNet50模型的结构,以及前向传播的方式、顺序
ResNet50类解析:
- 构造函数,传入了预测的类别数
- 初始化
- pre1 ,定义一个二维卷积,输出64个特征图,7x7的卷积,步长为2
- pre2 ,定义一个批归一化
- pre3,定义一个ReLU激活函数
- pre4,一个二维的最大池化
- 依次通过build_res_block_2()函数定义4个残差块
- 定义一个全局平均池化
- 定义一个全连接层,输出维度为1000
- 定义一个dropout
- 定义一个输出层的全连接层
- 前向传播函数,传入输入值
- 依次经过pre1、pre2、pre3、pre4,即卷积、批归一化、ReLU、最大池化
- 依次经过layer1 、layer2 、layer3 、layer4 等四个残差块
- 将layer4 的输出经过平局池化
- 依次经过两个全连接层
6、模型构建解析------models/residual_block.py
- BottleNeck类
- build_res_block_2()函数
- build_res_block_2()函数通过调用BottleNeck类构建残差块
class BottleNeck(tf.keras.layers.Layer):def __init__(self, filter_num, stride=1,with_downsample=True):super(BottleNeck, self).__init__()self.with_downsample = with_downsampleself.conv1 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(1, 1), strides=1, padding='same')self.bn1 = tf.keras.layers.BatchNormalization()self.conv2 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(3, 3), strides=stride, padding='same')self.bn2 = tf.keras.layers.BatchNormalization()self.conv3 = tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=1, padding='same')self.bn3 = tf.keras.layers.BatchNormalization()self.downsample = tf.keras.Sequential()self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=stride))self.downsample.add(tf.keras.layers.BatchNormalization())def call(self, inputs, training=None):identity = self.downsample(inputs)conv1 = self.conv1(inputs)bn1 = self.bn1(conv1, training=training)relu1 = tf.nn.relu(bn1)conv2 = self.conv2(relu1)bn2 = self.bn2(conv2, training=training)relu2 = tf.nn.relu(bn2)conv3 = self.conv3(relu2)bn3 = self.bn3(conv3, training=training)if self.with_downsample == True:output = tf.nn.relu(tf.keras.layers.add([identity, bn3]))else:output = tf.nn.relu(tf.keras.layers.add([inputs, bn3]))return output
BottleNeck类解析:
- 继承tf.keras.layers.Layer
- 构造函数,传入 特征图个数、步长、是否下采样等参数
- 初始化
- 是否进行下采样参数
- 定义一个1x1,步长为1的二维卷积conv1
- conv1 对应的批归一化
- 定义一个3x3,步长为1的二维卷积conv2
- conv2 对应的批归一化
- 定义一个3x3,步长为1的二维卷积conv2
- conv3 对应的批归一化
- 定义一个下采样层(
self.downsample),这个层是一个包含卷积层和批量归一化的Sequential模型,用于匹配输入和残差的维度 - call()函数为前向传播
- 应用下采样
- 应用三层卷积和批量归一化以及对应的ReLU
- with_downsample == True:
- 启用下采样,将下采样后的输入(
identity)与最后一个卷积层的输出(bn3)相加 - 没有启用下采样,将原始输入(
inputs)与最后一个卷积层的输出(bn3)相加
def build_res_block_2(filter_num, blocks, stride=1):res_block = tf.keras.Sequential()res_block.add(BottleNeck(filter_num, stride=stride))for _ in range(1, blocks):res_block.add(BottleNeck(filter_num, stride=1,with_downsample=False)) return res_block
build_res_block_2函数解析:
- 这个函数构建了一个包含多个BottleNeck层的残差块
- filter_num 是每个瓶颈层内卷积层的过滤器数量
- blocks 是要添加到顺序模型中的瓶颈层的数量
- stride 是卷积的步长,默认为 1
- 该函数初始化一个 Sequential 模型,并添加一个 BottleNeck 层作为第一层
- 然后,它迭代地添加额外的 BottleNeck 层,每个层的 stride=1 且
with_downsample=False(除第一个之外) - 此函数返回组装好的顺序模型,代表一个残差块
Resnet实战1
Resnet实战2
Resnet实战3
相关文章:
TensorFlow2实战-系列教程14:Resnet实战2
🧡💛💚TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 Resnet实战1 Resnet实战2 Resnet实战3 4、训练脚本train.py解读------创建模型 def …...
编程笔记 html5cssjs 069 JavaScript Undefined数据类型
编程笔记 html5&css&js 069 JavaScript Undefined数据类型 一、undefined数据类型二、类型运算小结 在JavaScript中,undefined 是一种基本数据类型,它表示一个变量已经声明但未定义(即没有赋值)或者一个对象属性不存在。 …...
《区块链简易速速上手小册》第6章:区块链在金融服务领域的应用(2024 最新版)
文章目录 6.1 金融服务中的区块链6.1.1 金融服务中区块链的基础6.1.2 主要案例:跨境支付6.1.3 拓展案例 1:去中心化金融(DeFi)6.1.4 拓展案例 2:代币化资产 6.2 区块链在支付系统中的作用6.2.1 支付系统中区块链的基础…...
【消息队列】kafka整理
kafka整理 整理kafka基本知识供回顾。...
python--杂识--16--代理密码中包含特殊字符
1 安装nginx 2 centos环境安装 yum install httpd-tools3 nginx.conf /etc/nginx/conf/nginx.conf #user nobody; worker_processes 1;#error_log logs/error.log; #error_log logs/error.log notice; #error_log logs/error.log info;#pid logs/nginx.pid;e…...
【Git】05 分离头指针
文章目录 一、分离头指针二、创建分支三、比较commit内容四、总结 一、分离头指针 正常情况下,在通过git checkout命令切换分支时,在命令后面跟着的是分支名(例如master、temp等)或分支名对应commit的哈希值。 非正常情况下&…...
【Tomcat与网络9】提高Tomcat启动速度的八大措施
本文我们来看一下如何对Tomcat进行调优,我们对于Tomcat的调优主要集中在三个方面:提高启动速度、提高系统稳定性和提高并发能力,后两者很多时候是相辅相成的,我们放在一起看。 Tomcat现在一般都嵌入在SpringBoot里,因…...
蓝桥杯嵌入式第七届真题(完成) STM32G431
蓝桥杯嵌入式第七届真题(完成) STM32G431 题目 相关文件 main.c /* USER CODE BEGIN Header */ /********************************************************************************* file : main.c* brief : Main program body**********************…...
如何降低视频RTSP解码延迟
降低RTSP(Real-Time Streaming Protocol)视频流的解码延迟涉及到网络传输和解码处理的优化。以下是一些常见的方法: 选择低延迟的解码器:使用专为低延迟优化的解码器,例如一些定制的H.264或H.265解码器。 优化解码器设…...
【Golang】自定义logrus日志保存为日志文件
背景 为了方便查看日志,项目中需要把日志保存到对应的日志文件中,所以需要当前的配置,以使得日志能够保存到对应的日志文件中。 代码 import ("github.com/orandin/lumberjackrus""github.com/sirupsen/logrus" )func …...
【大厂AI课学习笔记】1.4 算法的进步(4)关于李飞飞团队的ImageNet
第一个图像数据库是ImageNet,由斯坦福大学的计算机科学家李飞飞推出。ImageNet是一个大型的可视化数据库,旨在推动计算机视觉领域的研究。这个数据库包含了数以百万计的手工标记的图像,涵盖了数千个不同的类别。 基于ImageNet数据库…...
【Linux笔记】缓冲区的概念到标准库的模拟实现
一、缓冲区 “缓冲区”这个概念相信大家或多或少都听说过,大家其实在C语言阶段就已经接触到“缓冲区”这个东西,但是相信大家在C语言阶段并没有真正弄懂缓冲区到底是个什么东西,也相信大家在C语言阶段也因为缓冲区的问题写出过各种bug。 其…...
【前端收藏】前端小作文-前端八股文知识总结(超万字超详细)持续更新
有了这个八股文不仅对你基础知识的巩固,不管你是几年老前端程序员,还是要去面试的,文章覆盖了前端常用及不常用的方方面面,都是前端日后能用上的,对你的前端知识有总结意义,看完后,懂的不懂的都…...
GNSS模块的惯导技术:引领定位科技的前沿
全球导航卫星系统(GNSS)模块的惯导技术是一项颇具前瞻性的科技,它结合了全球定位系统和惯性导航技术,为各个领域的定位需求提供了更为精准和可靠的解决方案。本文将深入探讨GNSS模块的惯导技术,以及它如何在多个领域中…...
Flutter 和 Android原生(Activity、Fragment)相互跳转、传参
前言 本文主要讲解 Flutter 和 Android原生之间,页面相互跳转、传参, 但其中用到了两端相互通信的知识,非常建议先看完这篇 讲解通信的文章: Flutter 与 Android原生 相互通信:BasicMessageChannel、MethodChannel、…...
Kubernetes基础(十一)-CNI网络插件用法和对比
1 CNI概述 1.1 什么是CNI? Kubernetes 本身并没有实现自己的容器网络,而是借助 CNI 标准,通过插件化的方式来集成各种网络插件,实现集群内部网络相互通信。 CNI(Container Network Interface,容器网络的…...
yo!这里是单例模式相关介绍
目录 前言 特殊类设计 只能在堆上创建对象的类 1.方法一(构造函数下手) 2.方法二(析构函数下手) 只能在栈上创建对象的类 单例模式 饿汉模式实现 懒汉模式实现 后记 前言 在面向找工作学习c的过程中,除了基本…...
2023年上-未来几年我要做什么
1月份,离职。 2月份,春节休假回来,中旬去参加了一个月的瑜伽培训,学会了倒立、鹤蝉。。。。 3月份,瑜伽培训结束,开始收拾房子,并调研各类项目。 4月份,参与了朋友的区块链项目 …...
智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)
前言 (1)在上一节中,我们学习了对图像的固定二值化处理,可以将原始图像处理成二值化的黑白图像,这里面的本质就是将原来的二维数组进行了处理,处理后的二维数组里的元素都是0和255两个值。 (2…...
BGP协议
1.BGP相关概念 1.1 BGP的起源 不同自治系统(路由域)间路由交换与管理的需求推动了EGP的发展,但是EGP的算法简单,无法选路,从而被BGP取代。 自治系统:(AS) IGP:自治系统…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
深入理解JavaScript设计模式之单例模式
目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式(Singleton Pattern&#…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
