Python||五城P.M.2.5数据分析与可视化_使用华夫图分析各个城市的情况(中)
目录
1.上海市的空气质量
2.成都市的空气质量
【沈阳市空气质量情况详见下期】
五城P.M.2.5数据分析与可视化——北京市、上海市、广州市、沈阳市、成都市,使用华夫图和柱状图分析各个城市的情况
1.上海市的空气质量
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
import math
#读入文件
sh = pd.read_csv('./Shanghai.csv')
fig = plt.figure(dpi=100,figsize=(5,5))def good(pm):#优degree = []for i in pm:if 0 < i <= 35:degree.append(i)return degree
def moderate(pm):#良degree = []for i in pm:if 35 < i <= 75:degree.append(i)return degree
def lightlyP(pm):#轻度污染degree = []for i in pm:if 75 < i <= 115:degree.append(i)return degree
def moderatelyP(pm):#中度污染degree = []for i in pm:if 115 < i <= 150:degree.append(i)return degree
def heavilyP(pm):#重度污染degree = []for i in pm:if 150 < i <= 250:degree.append(i)return degree
def severelyP(pm):#严重污染degree = []for i in pm:if 250 < i:degree.append(i)return degreedef PM(sh,str3):sh_dist_pm = sh.loc[:, [str3]]sh_dist1_pm = sh_dist_pm.dropna(axis=0, subset=[str3])sh_dist1_pm = np.array(sh_dist1_pm[str3])sh_good_count = len(good(sh_dist1_pm))sh_moderate_count = len(moderate(sh_dist1_pm))sh_lightlyP_count = len(lightlyP(sh_dist1_pm))sh_moderatelyP_count = len(moderatelyP(sh_dist1_pm))sh_heavilyP_count = len(heavilyP(sh_dist1_pm))sh_severelyP_count = len(severelyP(sh_dist1_pm))a = {'优':sh_good_count,'良':sh_moderate_count,'轻度污染':sh_lightlyP_count,'中度污染':sh_moderatelyP_count,'重度污染':sh_heavilyP_count,'严重污染':sh_severelyP_count}pm = pd.DataFrame(pd.Series(a),columns=['daysum'])pm = pm.reset_index().rename(columns={'index':'level'})return pm
#上海
#PM_Jingan列
sh_jg = PM(sh,'PM_Jingan')
PMday_Jingan = np.array(sh_jg['daysum'])
#PM_Xuhui列
sh_xh = PM(sh,'PM_Xuhui')
PMday_Xuhui = np.array(sh_xh['daysum'])
sh_pm_daysum = (PMday_Jingan+PMday_Xuhui)/2
sum = 0
for i in sh_pm_daysum:sum += i
sh_pm_daysum1 = np.array(sh_pm_daysum)data = {'优':int((sh_pm_daysum[0]/sum)*100), '良':int((sh_pm_daysum[1]/sum)*100), '轻度污染': int(sh_pm_daysum[2]/sum*100),'中度污染':int((sh_pm_daysum[3]/sum)*100),'重度污染':int((sh_pm_daysum[4]/sum)*100),'严重污染':int((sh_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(FigureClass=Waffle,rows = 5, # 列数自动调整values = data,# 设置titletitle = {'label': "上海市污染情况",'loc': 'center','fontdict':{'fontsize': 13,}},labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],# 设置标签图例的样式legend = {'loc': 'lower left','bbox_to_anchor': (0, -0.4),'ncol': len(data),'framealpha': 0,'fontsize': 6},dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()
上海市总体空气质量良好,优和良的空气质量占比超过70%,只有不到1%的严重污染,中度污染和重度污染占比总和不超过10%。
2.成都市的空气质量
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle#读入文件
cd = pd.read_csv('./Chengdu.csv')
fig = plt.figure(dpi=100,figsize=(5,5))def good(pm):#优degree = []for i in pm:if 0 < i <= 35:degree.append(i)return degree
def moderate(pm):#良degree = []for i in pm:if 35 < i <= 75:degree.append(i)return degree
def lightlyP(pm):#轻度污染degree = []for i in pm:if 75 < i <= 115:degree.append(i)return degree
def moderatelyP(pm):#中度污染degree = []for i in pm:if 115 < i <= 150:degree.append(i)return degree
def heavilyP(pm):#重度污染degree = []for i in pm:if 150 < i <= 250:degree.append(i)return degree
def severelyP(pm):#严重污染degree = []for i in pm:if 250 < i:degree.append(i)return degreedef PM(cd,str3):cd_dist_pm = cd.loc[:, [str3]]cd_dist1_pm = cd_dist_pm.dropna(axis=0, subset=[str3])cd_dist1_pm = np.array(cd_dist1_pm[str3])cd_good_count = len(good(cd_dist1_pm))cd_moderate_count = len(moderate(cd_dist1_pm))cd_lightlyP_count = len(lightlyP(cd_dist1_pm))cd_moderatelyP_count = len(moderatelyP(cd_dist1_pm))cd_heavilyP_count = len(heavilyP(cd_dist1_pm))cd_severelyP_count = len(severelyP(cd_dist1_pm))a = {'优':cd_good_count,'良':cd_moderate_count,'轻度污染':cd_lightlyP_count,'中度污染':cd_moderatelyP_count,'重度污染':cd_heavilyP_count,'严重污染':cd_severelyP_count}pm = pd.DataFrame(pd.Series(a),columns=['daysum'])pm = pm.reset_index().rename(columns={'index':'level'})return pm
#成都
#PM_Caotangsi列
cd_cts = PM(cd,'PM_Caotangsi')
PMday_Caotangsi = np.array(cd_cts['daysum'])
#PM_Shahepu列
cd_shp = PM(cd,'PM_Shahepu')
PMday_Shahepu = np.array(cd_shp['daysum'])
cd_pm_daysum = (PMday_Shahepu+PMday_Caotangsi)/2
sum = 0
for i in cd_pm_daysum:sum += i
cd_pm_daysum1 = np.array(cd_pm_daysum)data = {'优':int((cd_pm_daysum[0]/sum)*100), '良':int((cd_pm_daysum[1]/sum)*100), '轻度污染': int(cd_pm_daysum[2]/sum*100),'中度污染':int((cd_pm_daysum[3]/sum)*100),'重度污染':int((cd_pm_daysum[4]/sum)*100),'严重污染':int((cd_pm_daysum[5]/sum)*100)}
total = np.sum(list(data.values()))
plt.figure(FigureClass=Waffle,rows = 5, # 列数自动调整values = data,# 设置titletitle = {'label': "成都市污染情况",'loc': 'center','fontdict':{'fontsize': 13,}},labels = ['{} {:.1f}%'.format(k, (v/total*100)) for k, v in data.items()],# 设置标签图例的样式legend = {'loc': 'lower left','bbox_to_anchor': (0, -0.4),'ncol': len(data),'framealpha': 0,'fontsize': 6},dpi=120
)
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.show()
成都市总体空气质量较差,空气污染程度占比约35%——其中轻度污染占比约17%,中度污染占比约8%,重度污染占比约8%,严重污染占比约2%。
【沈阳市空气质量情况详见下期】
相关文章:

Python||五城P.M.2.5数据分析与可视化_使用华夫图分析各个城市的情况(中)
目录 1.上海市的空气质量 2.成都市的空气质量 【沈阳市空气质量情况详见下期】 五城P.M.2.5数据分析与可视化——北京市、上海市、广州市、沈阳市、成都市,使用华夫图和柱状图分析各个城市的情况 1.上海市的空气质量 import numpy as np import pandas as pd impor…...

使用PDFBox实现pdf转其他图片格式
最近在做一个小项目,项目中有一个功能要把pdf格式的图片转换为其它格式,接下来看看用pdfbox来如何实现吧。 首先导入pdfbox相关依赖: <dependency> <groupId>org.apache.pdfbox</groupId> <artifactId>pdfbox</a…...
【技术预研】StarRocks官方文档浅析(4)
背景说明 基于starRocks官方文档,对其内容进行一定解析,方便大家理解和使用。 若无特殊标注,startRocks版本是3.2。 下面的章节和官方文档保持一致。 参考文档 产品简介 | StarRocks StarRocks StarRocks 是一款高性能分析型数据仓库&…...

时序数据库 Tdengine 执行命令能够查看执行的sql语句
curl是 访问6041端口,在windows系统里没有linux里的curl命令,需要用别的工具实现。我在cmd里是访问6030端口 第一步 在安装是时序数据库的服务器上也就是数据库服务端 进入命令窗口 执行 taos 第二步 执行 show queries\G;...

LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】
文章目录 前言LeetCode、746. 使用最小花费爬楼梯【简单,动态规划 线性DP】题目与分类思路 资料获取 前言 博主介绍:✌目前全网粉丝2W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。…...

[香橙派开发系列]使用蓝牙和手机进行信息的交换
文章目录 前言一、HC05蓝牙模块1.HC05概述2.HC05的连接图3.进入HC05的命令模式4.常用的AT指令4.1 检查AT是否上线4.2 重启模块4.3 获取软件版本号4.4 恢复默认状态4.5 获取蓝牙的名称4.6 设置蓝牙模块的波特率4.7 查询蓝牙的连接模式4.8 查询模块角色 5.连接电脑6.通过HC05发送…...

Jmeter 01 -概述线程组
1、Jmeter:概述 1.1 是什么? Jmeter是Apache公司使用Java 开发的一款测试工具 1.2 为什么? 高效、功能强大 模拟一些高并发或多次循环等特殊场景 1.3 怎么用? 下载安装 1、下载jmeter,解压缩2、安装Java环境(jmet…...

大数据Zookeeper--案例
文章目录 服务器动态上下线监听案例需求需求分析具体实现测试 Zookeeper分布式锁案例原生Zookeeper实现分布式锁Curator框架实现分布式锁 Zookeeper面试重点选举机制生产集群安装多少zk合适zk常用命令 服务器动态上下线监听案例 需求 某分布式系统中,主节点可以有…...

VS编译器对scanf函数不安全报错的解决办法(详细步骤)
📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 | 《数据结构与算法》 | 《C生万物》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有…...

vscode连接ssh报错
关于vscode更新版本至1.86后,导致无法连接服务器问题的记录 原因:vscode1.86更新了对glibc的要求,需要最低2.28版本,导致各种旧版本的linux发行版(比如最常见的centos 7)都无法用remote-ssh来连接了&#…...

C++ 哈希+unordered_map+unordered_set+位图+布隆过滤器(深度剖析)
文章目录 1. 前言2. unordered 系列关联式容器2.1 unordered_map2.1.1 unordered_map 的概念2.1.2 unordered_map 的使用 2.2 unordered_set2.2.1 unordered_set 的概念2.2.2 unordered_set 的使用 3. 底层结构3.1 哈希的概念3.2 哈希冲突3.3 哈希函数3.4 哈希冲突的解决3.4.1 …...

深入理解Netty及核心组件使用—下
目录 ChannelHandler ChannelHandler 接口 ChannelInboundHandler 接口 ChannelHandler 的适配器 Handler 的共享和并发安全性 资源管理和 SimpleChannelInboundHandler Bootstrap ChannelInitializer ChannelOption ChannelHandler ChannelHandler 接口 从开发人员的…...

vscode 突然连接不上服务器了(2024年版本 自动更新从1.85-1.86)
vscode日志 ll192.168.103.5s password:]0;C:\WINDOWS\System32\cmd.exe [17:09:16.886] Got some output, clearing connection timeout [17:09:16.887] Showing password prompt [17:09:19.688] Got password response [17:09:19.688] "install" wrote data to te…...

element-ui link 组件源码分享
link 组件的 api 涉及的内容不是很多,源码部分的内容也相对较简单,下面从以下这三个方面来讲解: 一、组件结构 1.1 组件结构如下图: 二、组件属性 2.1 组件主要有 type、underline、disabled、href、icon 这些属性,…...
序列化和反序列化、pytest-DDT数据驱动
序列化 序列化就是将对象转化成文件 python转成json import jsondata {"数字": [1, 1.1, -1],"字符串": ["aaaa", bbbb],"布尔值": [True, False],"空值": None,"列表": [[1, 2, 3], [4, 5, 6], [7, 8, 9]],&…...

Spring Boot整合MyBatis Plus实现基本CRUD与高级功能
文章目录 1. 引言2. 项目搭建与依赖配置2.1 添加MyBatis Plus依赖2.2 配置数据源与MyBatis Plus 3. 实现基本CRUD功能3.1 创建实体类3.2 创建Mapper接口3.3 实现Service层3.4 控制器实现 4. 高级功能实现4.1 自动填充功能4.2 乐观锁功能4.3 逻辑删除功能 5. 拓展:My…...

CSS 闪电按钮效果
<template><view class="const"><div class="voltage-button"><button>闪电按钮</button><svg version="1.1" xmlns="http://www.w3.org/2000/svg" x="0px" y="0px" viewBox=&q…...

【Go-Zero】Error: only one service expected goctl一键转换生成rpc服务错误解决方案
【Go-Zero】Error: only one service expected goctl一键转换生成rpc服务错误解决方案 大家好 我是寸铁👊 总结了一篇Error: only one service expected goctl一键转换生成rpc服务错误解决方案的文章✨ 喜欢的小伙伴可以点点关注 💝 问题背景 今天寸铁在…...

从头开始构建和训练 Transformer(上)
1、导 读 2017 年,Google 研究团队发表了一篇名为《Attention Is All You Need》的论文,提出了 Transformer 架构,是机器学习,特别是深度学习和自然语言处理领域的范式转变。 Transformer 具有并行处理功能,可以实现…...
JVM-JVM内存结构(一)
程序计数器 Program Counter Register程序计数器(寄存器) 程序计数器在物理层上是通过寄存器实现的 作用:记住下一条jvm指令的执行地址特点 是线程私有的(每个线程都有属于自己的程序计数器)不会存在内存溢出 虚拟机栈 每个线程运行时所需要的内存称为虚拟机栈…...

利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...