时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
目录
- 时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果






基本介绍
1.MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测(风电功率预测);
2.运行环境为Matlab2021b;
3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

模型描述
CNN-LSTM-AdaBoost是一种将CNN-LSTM和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-LSTM-AdaBoost算法的基本思想是将CNN-LSTM作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。
程序设计
- 完整源码和数据获取方式资源出下载MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测 。
% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 100, ... % 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', 0.01, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod',70, ... % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ... % 学习率调整因子'L2Regularization', 0.001, ... % 正则化参数'ExecutionEnvironment', 'cpu',... % 训练环境'Verbose', 1, ... % 关闭优化过程'Plots', 'none'); % 画出曲线
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:
时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测 目录 时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现基于CNN-LST…...
Xcode 15 及以上版本:libarclite 库缺少问题
参考链接:Xcode 15 libarclite 缺失问题_sdk does not contain libarclite at the path /ap-CSDN博客 报错: SDK does not contain libarclite at the path /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/arc/libarcl…...
Spring设计模式之单例模式
文章目录 一、概述二、单例模式的优点三、Spring中的单例模式四、单例模式的实现方式五、总结 一、概述 单例模式是一种创建型设计模式,确保一个类只有一个实例,并提供一个全局访问点来获取该实例。在Spring框架中,单例模式是默认的Bean定义…...
Fink CDC数据同步(二)MySQL数据同步
1 开启binlog日志 2 数据准备 use bigdata; drop table if exists user;CREATE TABLE user(id INTEGER NOT NULL AUTO_INCREMENT,name VARCHAR(20) NOT NULL DEFAULT ,birth VARCHAR(20) NOT NULL DEFAULT ,gender VARCHAR(10) NOT NULL DEFAULT ,PRIMARY KEY(id) ); ALTER TA…...
JavaWeb后端开发(第一期):Maven基础、Maven的安装配置、如何创建maven项目模块、maven的生命周期
Java后端开发:2024年2月6日 -> LiuJinTao 文章目录 JavaWeb后端开发(第一期) : maven基础一、 maven介绍1.1 什么maven呢:1.2 maven的作用1.3 maven 模型1.4 maven 仓库 二、maven 安装2.1 配置本地仓库2.2 配置阿里…...
Windows SDK(四)鼠标和键盘消息处理
鼠标基础知识 鼠标一般分为三种状态,三个按钮 三种状态:单击,双击,拖动 三个按钮:左键(LBUTTON),右键(RBUTTON),中键(MBUTTON&…...
LabVIEW汽车自燃监测预警系统
LabVIEW汽车自燃监测预警系统 随着汽车行业的飞速发展,汽车安全问题日益受到公众的关注。其中,汽车自燃现象因其突发性和破坏性,成为一个不可忽视的安全隐患。为了有效预防和减少自燃事故的发生,提出了LabVIEW的汽车自燃监测预警…...
数据图表方案,企业视频生产数据可视化
在信息爆炸的时代,如何将复杂的数据转化为直观、生动的视觉信息,是企业在数字化转型中面临的挑战。美摄科技凭借其独特的数据图表方案,为企业在数据可视化领域打开了一扇全新的大门。 一、数据图表方案的优势 1、高效便捷:利用数…...
【HarmonyOS应用开发】APP应用的通知(十五)
相关介绍 通知旨在让用户以合适的方式及时获得有用的新消息,帮助用户高效地处理任务。应用可以通过通知接口发送通知消息,用户可以通过通知栏查看通知内容,也可以点击通知来打开应用,通知主要有以下使用场景: 显示接收…...
开启一个服务,将服务器指定的文件读取,传播到网上其他终端
from flask import Flask, render_template_string app Flask(__name__)app.route(/get-data) def get_data():# 读取data.txt文件的内容with open(r./2024/2/4/data.txt, r) as file:data file.read()print(data)# 返回数据的HTML表示return render_template_string(<div…...
nii convert to 2D image【python】
可以自己精简,我的label是二分类 import SimpleITK as sitk import cv2 from PIL import Image import numpy as np import nibabel as nib # nii格式一般都会用到这个包 import imageio # 转换成图像 import osimport numpy as np from scipy.ndimage import ro…...
C语言指针学习 之 指针是什么
前言 指针是C语言中一个重要概念,也是C语言的一个重要特色,正确而灵活地运用指针可以使程序简洁、紧凑、高效。每一个学习和使用C语言的人都应当深入的学习和掌握指针,也可以说不掌握指针就没有掌握C语言的精华。 一、什么是指针 想弄清楚什…...
【文本到上下文 #10】探索地平线:GPT 和 NLP 中大型语言模型的未来
一、说明 欢迎阅读我们【文本到上下文 #10】:此为最后一章。以我们之前对 BERT 和迁移学习的讨论为基础,将重点转移到更广阔的视角,包括语言模型的演变和未来,特别是生成式预训练转换器 (GPT) 及其在 NLP 中…...
(四)elasticsearch 源码之索引流程分析
https://www.cnblogs.com/darcy-yuan/p/17024341.html 1.概览 前面我们讨论了es是如何启动,本文研究下es是如何索引文档的。 下面是启动流程图,我们按照流程图的顺序依次描述。 其中主要类的关系如下: 2. 索引流程 (primary) 我们用postman发送请求&…...
飞天使-k8s知识点16-kubernetes实操1-pod
文章目录 深入Pod 创建Pod:配置文件详解写个pod的yaml 文件深入Pod 探针:探针技术详解 深入Pod 创建Pod:配置文件详解 资源清单参考链接:https://juejin.cn/post/6844904078909128712写个pod的yaml 文件 apiVersion: v1 kind: P…...
【gcc】webrtc发送侧 基于丢包更新码率
参考大神的分析1 rtt 有问题:网络拥堵,直接下调码率 G:\CDN\rtcCli\m98\src\modules\congestion_controller\goog_cc\send_side_bandwidth_estimation.hRttBasedBackoff RttBasedBackoff rtt_backoff_;class RttBasedBackoff {public:explicit RttBasedBackoff(const WebRtcK…...
数字经济的未来:探索Web3的商业模式
随着技术的不断演进,Web3正逐渐成为数字经济发展的关键驱动力之一。在这个数字时代,我们目睹着Web3为商业模式带来翻天覆地的变革,探索着数字经济未来的可能性。 1. 去中心化的商业生态 Web3以去中心化为核心理念,打破了传统商业…...
Centos7部署MetaBase-v0.48.3
MetaBase_v0.48.3下载地址 : http://downloads.metabase.com/v0.48.3/metabase.jar JDK11 下载地址:https://repo.huaweicloud.com/java/jdk/11.0.113/jdk-11.0.1_linux-x64_bin.tar.gz 1.不修改源数据库的方式 官方提示此方式仅用于测试学习使用,如用生…...
【计算机网络】Socket的SO_TIMEOUT与连接超时时间
SO_TIMEOUT选项是Socket的一个选项,用于设置读取数据的超时时间。它指定了在读取数据时等待的最长时间,如果在指定的时间内没有数据可读取,将抛出SocketTimeoutException异常。 SO_TIMEOUT的设置 默认情况下,SO_TIMEOUT选项的值…...
解密 ARMS 持续剖析:如何用一个全新视角洞察应用的性能瓶颈?
作者:饶子昊、杨龙 应用复杂度提升,根因定位困难重重 随着软件技术发展迭代,很多企业软件系统也逐步从单体应用向云原生微服务架构演进,一方面让应用实现高并发、易扩展、开发敏捷度高等效果,但另外一方面也让软件应…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
