AD域国产替代方案,助力某金融企业麒麟信创电脑实现“真替真用”
近期收到不少企业客户反馈采购的信创PC电脑用不起来,影响信创改造的进度。例如,某金融企业积极响应国产化信创替代战略,购置了一批麒麟操作系统电脑。分发使用中发现了如下问题:
• 当前麒麟操作系统电脑无法做到统一身份认证,采用的是本地账号,这导致与现有AD域账号分离,麒麟终端、Windows终端密码不同步,员工使用不便利,且无法执行密码合规;
• 无法查看信创终端的上线情况,不知道实际使用率;
• 终端入网目前没有有效的准入办法,员工登录麒麟桌面就能上网了,终端入网不安全、不规范。
面对这些问题,宁盾给出了解决方案,目标是为该金融公司搭建一套国产身份管理系统,统一管控麒麟终端,与AD域身份实时同步,对麒麟终端做入网认证管控。
国产化身份域管同步AD域身份,接管信创终端资产
在本项目中,该企业借助宁盾国产化身份域管作为微软AD域的国产替代方案,用于迁移同步AD域内的组织架构和用户身份信息,同时将新购置的麒麟电脑(终端)对接到宁盾国产化身份域管上,用户使用与AD一致的账号密码登录电脑进行统一认证,实现信创终端的统一管控。具体方案如下:
1. 宁盾无缝迁移同步AD身份,并建立双向信任;
2. 麒麟终端接入宁盾国产身份域控,员工使用与AD一致的国产身份登录麒麟桌面;
3. 宁盾域管统一管理信创终端资产,终端上线可视化,终端使用情况一目了然;
4. 借助宁盾终端网络准入能力对信创终端做入网实名认证,提升安全。
在麒麟操作系统桌面输入宁盾目录服务账号及密码
在麒麟桌面系统内通过命令行查找,显示该用户名存在
在宁盾AM后台查看登录会话,显示该用户认证成功
搭建国产数字身份底座,推动信创终端“真替真用”
企业推进国产化信创建设的一大举措就是采购国产操作系统终端,但在实际使用时依旧以Windows系统为主。究其根源,国产信创的生态还不够成熟。以Windows系统为中心的微软生态早已贯穿到企业生产、办公的方方面面,尤其是微软AD,是支撑微软各个应用、设备互联互通的重要身份基础设施。当国产操作系统终端、国产应用引入时,需要考虑到微软AD是否能纳管,提供统一身份认证和授权。当微软AD无法纳管且面临被替换的趋势时,企业更应当提前寻找微软AD国产化替代方案。
宁盾国产化身份域管能力模块
宁盾国产化身份域管是目前国内最深的AD技术栈积累之一,高度兼容微软AD、IBM、Apache等传统身份活动目录的schema,具备微软AD的核心功能,如目录服务、应用接入、网络接入、终端管控等。此外,针对现代化的IT组织对身份安全、身份同步、混合终端的安全管控需求,宁盾国产化身份域管拓展了多个场景能力,使用国产身份域管的企业可以选择叠加MFA多因素认证、身份同步(云、社交应用账号同步)、泛终端准入(Windows、macOS、Linux、麒麟、统信UOS、BYOD等)等多个功能模块,以满足信息安全建设需求,提升整个IT架构的安全性。
宁盾作为第三方中立的身份基础设施供应商,在面对不同品牌、不同类型设备时有更强的兼容性优势,不将企业捆绑限定在任一厂商生态里,这种开放性与兼容性受到互联网高科技、央国企制造业、金融等行业客户的欢迎。
相关文章:

AD域国产替代方案,助力某金融企业麒麟信创电脑实现“真替真用”
近期收到不少企业客户反馈采购的信创PC电脑用不起来,影响信创改造的进度。例如,某金融企业积极响应国产化信创替代战略,购置了一批麒麟操作系统电脑。分发使用中发现了如下问题: • 当前麒麟操作系统电脑无法做到统一身份认证&…...

抽象springBoot报错
Failed to configure a DataSource: url attribute is not specified and no embedded datasource could be configured. 中文翻译:无法配置DataSource:未指定“url”属性,并且无法配置嵌入数据源。 DataSource 翻译:数据源 得…...

Linux的打包压缩与解压缩---tar、xz、zip、unzip
最近突然用到了许久不用的压缩解压缩命令,真的陌生, 哈哈,记录一下,后续就不用搜索了。 tar的打包 tar -cvf 压缩有的文件名称 需要压缩的文件或文件夹tar -cvf virtualbox.tar virtualbox/ tar -zcvf virtualbox.tar virtualbo…...

在angular12中proxy.conf.json中配置详解
一、proxy.conf.json文件的目录 二、proxy.conf.json文件中的配置 "/xxx/api": {"target": "地址/api","secure": false,"logLevel": "debug","changeOrigin": true,"pathRewrite": {"…...
PyTorch 中音频信号处理库torchaudio的详细介绍
torchaudio 是 PyTorch 深度学习框架的一部分,是 PyTorch 中处理音频信号的库,专门用于处理和分析音频数据。它提供了丰富的音频信号处理工具、特征提取功能以及与深度学习模型结合的接口,使得在 PyTorch 中进行音频相关的机器学习和深度学习…...
OpenAI研究揭示:ChatGPT对生物武器制造影响有限
### OpenAI研究揭示:ChatGPT对生物武器制造影响有限 在最近的一项引人注目的研究中,OpenAI探索了其旗舰人工智能产品GPT-4在辅助制造生物武器方面的潜力。尽管公众对人工智能可能带来的潜在风险表示担忧,但OpenAI的发现却意味着这种担忧可能…...

IntelliJ IDEA 2023.3发布,AI 助手出世,新特性杀麻了!!
目录 关键亮点 对 Java 21 功能的完全支持 调试器中的 Run to Cursor(运行到光标)嵌入选项 带有编辑操作的浮动工具栏 用户体验优化 Default(默认)工具窗口布局选项 默认颜色编码编辑器标签页 适用于 macOS 的新产品图标 Speed Sear…...

async 与 await(JavaScript)
目录捏 前言一、async二、await三、使用方法总结 前言 async / await 是 ES2017(ES8) 提出的基于 Promise 解决异步的最终方案。上一篇文章介绍了 回调地狱 与 Promise(JavaScript),因为 Promise 的编程模型依然充斥着大量的 then 方法&#…...

GPT-1, GPT-2, GPT-3, GPT-3.5, GPT-4论文内容解读
目录 1 ChatGPT概述1.1 what is chatGPT1.2 How does ChatGPT work1.3 The applications of ChatGPT1.3 The limitations of ChatGPT 2 算法原理2.1 GPT-12.1.1 Unsupervised pre-training2.1.2 Supervised fine-tuning2.1.3 语料2.1.4 分析 2.2 GPT-22.3 GPT-32.4 InstructGPT…...

第62讲商品搜索动态实现以及性能优化
商品搜索后端动态获取数据 后端动态获取数据: /*** 商品搜索* param q* return*/GetMapping("/search")public R search(String q){List<Product> productList productService.list(new QueryWrapper<Product>().like("name", q)…...

我的PyTorch模型比内存还大,怎么训练呀?
原文:我的PyTorch模型比内存还大,怎么训练呀? - 知乎 看了一篇比较老(21年4月文章)的不大可能训练优化方案,保存起来以后研究一下。 随着深度学习的飞速发展,模型越来越臃肿,哦不&a…...

HTTP协议笔记
HTTP协议笔记 参考: (建议精读)HTTP灵魂之问,巩固你的 HTTP 知识体系 《透视 HTTP 协议》——chrono 目录: 1、说说你对HTTP的了解吧。 1. HTTP状态码。 2. HTTP请求头和响应头,其中包括cookie、跨域响…...

零基础学Python之网络编程
1.什么是socket 官方定义: 套接字(socket)是一个抽象层,应用程序可以通过它发送或接收数据,可对其进行像对文件一样的打开、读写和关闭等操作。套接字允许应用程序将I/O插入到网络中,并与网络中的其他应用…...

09 AB 10串口通信发送原理
通用异步收发传输器( Universal Asynchronous Receiver/Transmitter, UART)是一种异步收发传输器,其在数据发送时将并行数据转换成串行数据来传输, 在数据接收时将接收到的串行数据转换成并行数据, 可以实现…...
[145] 二叉树的后序遍历 js
题目描述:给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 解题思路: 迭代法: 后序(左右根) 先序是根左右 后序是左右根 后序翻转一下就是 根右左 所以后序的结果实际就是 先序的方法࿰…...
开源模型应用落地-业务优化篇(四)
一、前言 经过线程池优化、请求排队和服务实例水平扩容等措施,整个AI服务链路的性能得到了显著地提升。但是,作为追求卓越的大家,绝不会止步于此。我们的目标是在降低成本和提高效率方面不断努力,追求最佳结果。如果你们在实施AI项目方面有经验,那一定会对GPU服务器的高昂…...
MySQL的MVCC机制
MVCC机制 使用MVCC(Multi-Version Concurrency Control,多版本的并发控制协议)机制来实现可重复读(REPEATABLE READ)的隔离级别 MVCC最大的优点是读不加锁,因此读写不冲突,并发性能好。InnoDB实现MVCC,是通过保存数据在某个时间点…...

stable-diffusion | v1-5-pruned.ckpt和v1-5-pruned-emaonly.ckpt的区别
https://github.com/runwayml/stable-diffusion?tabreadme-ov-file#reference-sampling-script 对于 1.5 模型,其中可能包括四部分:标准模型、文本编码器、VAE模型、EMA模型。 标准模型:生成图片的核心模块,潜空间中的前向扩散和…...

基于Springboot的足球社区管理系统(有报告)。Javaee项目,springboot项目。
演示视频: 基于Springboot的足球社区管理系统(有报告)。Javaee项目,springboot项目。 项目介绍: 采用M(model)V(view)C(controller)三层体系结构…...

8.0 Zookeeper 四字命令教程详解
zookeeper 支持某些特定的四字命令与其交互,用户获取 zookeeper 服务的当前状态及相关信息,用户在客户端可以通过 telenet 或者 nc(netcat) 向 zookeeper 提交相应的命令。 安装 nc 命令: $ yum install nc …...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...