当前位置: 首页 > news >正文

NLP_语言模型的雏形 N-Gram 模型

文章目录

  • N-Gram 模型
    • 1.将给定的文本分割成连续的N个词的组合(N-Gram)
    • 2.统计每个N-Gram在文本中出现的次数,也就是词频
    • 3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到
    • 4.可以使用这些概率来预测文本中下一个词出现的可能性。多次迭代这个过程,甚至可以生成整个句子,也可以算出每个句子在语料库中出现的概率
  • “词”是什么,如何“分词”
  • 创建一个Bigram字符预测模型
    • 1.构建实验语料库
    • 2.把句子分成N个Gram(分词)
    • 3.计算每个Bigram在语料库中的词频
    • 4.计算每个Bigram的出现概率
    • 5.根据Bigram出现的概率,定义生成下一个词的函数
    • 6.输入一个前缀,生成连续文本
  • N-Gram 模型小结


N-Gram 模型

N-Gram 模型的构建过程如下:

1.将给定的文本分割成连续的N个词的组合(N-Gram)

比如,在Bigram 模型(2-Gram 模型,即二元模型)中,我们将文本分割成多个由相邻的两个词构成的组合,称它们为“二元组”(2-Gram )。

在这里插入图片描述

2.统计每个N-Gram在文本中出现的次数,也就是词频

比如,二元组“我爱”在语料库中出现了3次(如下页图所示),即这个二元组的词频为3。
在这里插入图片描述

3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到

比如,二元组“我爱”在语料库中出现了3次,而二元组的前缀“我”在语料库中出现了10次,则给定“我”,下一个词为“爱”的概率为30%(如下图所示)。

在这里插入图片描述

4.可以使用这些概率来预测文本中下一个词出现的可能性。多次迭代这个过程,甚至可以生成整个句子,也可以算出每个句子在语料库中出现的概率

在这里插入图片描述
比如,从一个字“我”,生成“爱”,再继续生吃
成“吃”,直到“我爱吃肉”这个句子。计算“我爱”“爱吃”“吃肉”出现的概率,然后乘以各自的条件概率,就可以得到这个句子在语料库中出现的概率了。如上图所示。

“词”是什么,如何“分词”

在N-Gram 模型中,它表示文本中的一个元素,“N-Gram”指长度为N的连续元素序列。

这里的“元素”在英文中可以指单词,也可以指字符,有时还可以指“子词”(Subword );而在中文中,可以指词或者短语,也可以指字。

一般的自然语言处理工具包都为我们提供好了分词的工具。比如,英文分词通常使用 NLTK、spaCy等自然语言处理库,中文分词通常使用jieba库(中文NLP工具包),而如果你将来会用到BERT这样的预训 I练模型,那么你就需要使用BERT 的专属分词器Tokenizer,它会把每个单词拆成子词一这是 BERT处理生词的方法。

创建一个Bigram字符预测模型

在这里插入图片描述

1.构建实验语料库

# 构建一个数据集
corpus = ["小张每天喜欢学习","小张周末喜欢徒步","小李工作日喜欢加班","小李周末喜欢爬山","小张周末喜欢爬山","小李不喜欢躺平"]

2.把句子分成N个Gram(分词)

# 定义一个分词函数,将文本转换为单个字符的列表
def tokenize(text):return [char for char in text] # 将文本拆分为字符列表
# 对每个文本进行分词,并打印出对应的单字列表
print("单字列表:") 
for text in corpus:tokens = tokenize(text)print(tokens)

在这里插入图片描述

3.计算每个Bigram在语料库中的词频

# 定义计算 N-Gram 词频的函数
from collections import defaultdict, Counter # 导入所需库
def count_ngrams(corpus, n):ngrams_count = defaultdict(Counter)  # 创建一个字典,存储 N-Gram 计数for text in corpus:  # 遍历语料库中的每个文本tokens = tokenize(text)  # 对文本进行分词for i in range(len(tokens) - n + 1):  # 遍历分词结果,生成 N-Gramngram = tuple(tokens[i:i+n])  # 创建一个 N-Gram 元组prefix = ngram[:-1]  # 获取 N-Gram 的前缀token = ngram[-1]  # 获取 N-Gram 的目标单字ngrams_count[prefix][token] += 1  # 更新 N-Gram 计数return ngrams_count
bigram_counts = count_ngrams(corpus, 2) # 计算 bigram 词频
print("bigram 词频:") # 打印 bigram 词频
for prefix, counts in bigram_counts.items():print("{}: {}".format("".join(prefix), dict(counts))) 

在这里插入图片描述

4.计算每个Bigram的出现概率

# 定义计算 N-Gram 出现概率的函数
def ngram_probabilities(ngram_counts):ngram_probs = defaultdict(Counter) # 创建一个字典,存储 N-Gram 出现的概率for prefix, tokens_count in ngram_counts.items(): # 遍历 N-Gram 前缀total_count = sum(tokens_count.values()) # 计算当前前缀的 N-Gram 计数for token, count in tokens_count.items(): # 遍历每个前缀的 N-Gramngram_probs[prefix][token] = count / total_count # 计算每个 N-Gram 出现的概率return ngram_probs
bigram_probs = ngram_probabilities(bigram_counts) # 计算 bigram 出现的概率
print("\nbigram 出现的概率 :") # 打印 bigram 概率
for prefix, probs in bigram_probs.items():print("{}: {}".format("".join(prefix), dict(probs)))

在这里插入图片描述

5.根据Bigram出现的概率,定义生成下一个词的函数

# 定义生成下一个词的函数
def generate_next_token(prefix, ngram_probs):if not prefix in ngram_probs: # 如果前缀不在 N-Gram 中,返回 Nonereturn Nonenext_token_probs = ngram_probs[prefix] # 获取当前前缀的下一个词的概率next_token = max(next_token_probs, key=next_token_probs.get) # 选择概率最大的词作为下一个词return next_token

6.输入一个前缀,生成连续文本

# 定义生成连续文本的函数
def generate_text(prefix, ngram_probs, n, length=8):tokens = list(prefix) # 将前缀转换为字符列表for _ in range(length - len(prefix)): # 根据指定长度生成文本 # 获取当前前缀的下一个词next_token = generate_next_token(tuple(tokens[-(n-1):]), ngram_probs) if not next_token: # 如果下一个词为 None,跳出循环breaktokens.append(next_token) # 将下一个词添加到生成的文本中return "".join(tokens) # 将字符列表连接成字符串
# 输入一个前缀,生成文本
generated_text = generate_text("小", bigram_probs, 2)
print("\n 生成的文本:", generated_text) # 打印生成的文本

在这里插入图片描述

N-Gram 模型小结

N-Gram 是一种用于语言建模的技术,它用来估计文本中词序列的概率分布。 N-Gram 模型将文本看作一个由词序列构成的随机过程,根据已有的文本数据,计算出词序列出现的概率。因此,N-Gram主要用于语言建模、文本生成、语音识别等自然语言处理任务中。

  • (1)N-Gram是一种基于连续词序列的文本表示方法。它将文本分割成由连续的 N个词组成的片段,从而捕捉局部语序信息。
  • (2)N-Gram 可以根据不同的N值捕捉不同程度的上下文信息。例如,1-Gram(Unigram)仅关注单个词,而2-Gram(Bigram)关注相邻的两个词的组合,以此类推。
  • (3)随着N的增加,模型可能会遇到数据稀疏性问题,导致模型性能下降。

学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

动手学深度学习(pytorch)

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷
慕课网
海贼宝藏

相关文章:

NLP_语言模型的雏形 N-Gram 模型

文章目录 N-Gram 模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时&#xff0…...

mac电脑flutter环境配置,解决疑难问题

准备工作 首先搭建flutter的环境需要使用到flutter的sdk,可以直接跳去官网下载:Choose your first type of app - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter,下载时要注意你电脑所使用的芯片是Intel的还是苹果的芯片。 下载好的…...

C++ bool 布尔类型

在C 中 bool类型占用1个字节长度,bool 类型只有两个取值,true 和 false,true 表示“真”,false 表示“假”。 需要注意的C中使用cout 打印的时候是没有true 和 false 的 只有0和1 ,这里0表示假,非0表示真 …...

DC-7靶机渗透详细流程

信息收集: 1.存活扫描: 由于靶机和kali都是nat的网卡,都在一个网段,我们用arp-scan会快一点: arp-scan arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6…...

提速MySQL:数据库性能加速策略全解析

提速MySQL:数据库性能加速策略全解析 引言理解MySQL性能指标监控和评估性能指标索引优化技巧索引优化实战案例 查询优化实战查询优化案例分析 存储引擎优化InnoDB vs MyISAM选择和优化存储引擎存储引擎优化实例 配置调整与系统优化配置调整系统优化优化实例 实战案例…...

Flink实战六_直播礼物统计

接上文:Flink实战五_状态机制 1、需求背景 现在网络直播平台非常火爆,在斗鱼这样的网络直播间,经常可以看到这样的总榜排名,体现了主播的人气值。 人气值计算规则:用户发送1条弹幕互动,赠送1个荧光棒免费…...

Compose | UI组件(十五) | Scaffold - 脚手架

文章目录 前言一、Scaffold脚手架简介二、Scaffold的主要组件三、如何使用Scaffold四、Compose中Scaffold脚手架的具体例子例子1:基本Scaffold布局例子2:带有Drawer的Scaffold布局例子3:带有Snackbar的Scaffold布局 总结 前言 Compose中的Sca…...

Vue-60、Vue技术router-link的replace属性

1、作用&#xff1a;控制路由跳转时操作浏览器历史记录的模式 2、浏览器的历史记录有两种写入方式&#xff1a;分别是push和replace,push是追加历史记录&#xff0c;replace是替换当前记录。路由跳转时候默认为push 3、如何开启replace模式&#xff1a; <router-link rep…...

Hive与Presto中的列转行区别

Hive与Presto列转行的区别 1、背景描述2、Hive/Spark列转行3、Presto列转行 1、背景描述 在处理数据时&#xff0c;我们经常会遇到一个字段存储多个值&#xff0c;这时需要把一行数据转换为多行数据&#xff0c;形成标准的结构化数据 例如&#xff0c;将下面的两列数据并列转换…...

探讨CSDN等级制度:博客等级、原力等级、创作者等级

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…...

2.8作业

sqlite3数据库操作接口详细整理&#xff0c;以及常用的数据库语句 头文件&#xff1a; #include <sqlite3.h> 编译时候要加上-lsqlite3 gcc a.c -lsqlite3 1&#xff09;sqlite3_open 打开一个数据库&#xff0c;如果数据库不存在&#xff0c;则创建一个数据库 2&am…...

机器学习中常用的性能度量—— ROC 和 AUC

什么是泛化能力&#xff1f; 通常我们用泛化能力来评判一个模型的好坏&#xff0c;通俗的说&#xff0c;泛化能力是指一个机器学期算法对新样本&#xff08;即模型没有见过的样本&#xff09;的举一反三的能力&#xff0c;也就是学以致用的能力。 举个例子&#xff0c;高三的…...

微服务入门篇:Nacos注册中心(Nacos安装,快速入门,多级存储,负载均衡,环境隔离,配置管理,热更新,集群搭建,nginx反向代理)

目录 1.Nacos安装1.官网下载2.解压到本地3.启动nacos 2.Nacos快速入门1.在父工程中导入nacos依赖2.给子项目添加客户端依赖3.修改对应服务的配置文件4.启动服务&#xff0c;查看nacos发现情况 3.Nacos服务多级存储模型4.NacosRule负载均衡5. 服务实例的权重设置6.环境隔离&…...

解决CORS错误(Spring Boot)

记录一下错误&#xff0c;以博客的形式 前言 跨域&#xff08;Cross-Origin&#xff09;是指在Web开发中&#xff0c;当一个Web应用试图从一个源&#xff08;域名、协议、端口组合&#xff09;获取资源时&#xff0c;该请求的目标与当前页面的源不同。具体来说&#xff0c;当一…...

NLP入门系列—词嵌入 Word embedding

NLP入门系列—词嵌入 Word embedding 2013年&#xff0c;Word2Vec横空出世&#xff0c;自然语言处理领域各项任务效果均得到极大提升。自从Word2Vec这个神奇的算法出世以后&#xff0c;导致了一波嵌入&#xff08;Embedding&#xff09;热&#xff0c;基于句子、文档表达的wor…...

JUnit5单元测试框架提供的注解

目录 第一章、注释在类上的注解1.1&#xff09;JUnit5注释在类上的注解集成测试&#xff1a;SpringBootTest集成测试&#xff1a;ExtendWith(SpringExtension.class)单元测试&#xff1a;ExtendWith(MockitoExtension.class)切片测试:WebMvcTest和DataJpaTest<font colorred…...

ThinkPHP 中使用Redis

环境.env [app] app_debug "1" app_trace ""[database] database "" hostname "127.0.0.1" hostport "" password "" prefix "ls_" username ""[redis] hostname "127.0.0.1…...

Go语言Gin框架安全加固:全面解析SQL注入、XSS与CSRF的解决方案

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 前言 在使用 Gin 框架处理前端请求数据时&#xff0c;必须关注安全性问题&#xff0c;以防范常见的攻击…...

MySQL数据库基础与SELECT语句使用梳理

MySQL数据库基础与SELECT语句使用梳理 注意&#xff1a;本文操作全部在终端进行 数据库基础知识 什么是数据库 数据库&#xff08;database&#xff09;是保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;&#xff0c;实质上数据库是一个以某种 有组…...

scikit-learn 1.3.X 版本 bug - F1 分数计算错误

如果您正在使用 scikit-learn 1.3.X 版本&#xff0c;在使用 f1_score() 或 classification_report() 函数时&#xff0c;如果参数设置为 zero_division1.0 或 zero_divisionnp.nan&#xff0c;那么函数的输出结果可能会出错。错误的范围可能高达 100%&#xff0c;具体取决于数…...

Python面试题19-24

解释Python中的装饰器&#xff08;decorators&#xff09;是什么&#xff0c;它们的作用是什么&#xff1f; 装饰器是一种Python函数&#xff0c;用于修改其他函数的功能。它们允许在不修改原始函数代码的情况下&#xff0c;动态地添加功能。解释Python中的文件处理&#xff08…...

《Django+React前后端分离项目开发实战:爱计划》 01 项目整体概述

01 Introduction 《Django+React前后端分离项目开发实战:爱计划》 01 项目整体概述 Welcome to Beginning Django API wih React! This book focuses on they key tasks and concepts to get you started to learn and build a RESTFul web API with Django REST Framework,…...

从零开始 TensorRT(4)命令行工具篇:trtexec 基本功能

前言 学习资料&#xff1a; TensorRT 源码示例 B站视频&#xff1a;TensorRT 教程 | 基于 8.6.1 版本 视频配套代码 cookbook 参考源码&#xff1a;cookbook → 07-Tool → trtexec 官方文档&#xff1a;trtexec 在 TensorRT 的安装目录 xxx/TensorRT-8.6.1.6/bin 下有命令行…...

基于SpringBoot+Vue的校园博客管理系统

末尾获取源码作者介绍&#xff1a;大家好&#xff0c;我是墨韵&#xff0c;本人4年开发经验&#xff0c;专注定制项目开发 更多项目&#xff1a;CSDN主页YAML墨韵 学如逆水行舟&#xff0c;不进则退。学习如赶路&#xff0c;不能慢一步。 目录 一、项目简介 二、开发技术与环…...

基于 SpringBoot 和 Vue.js 的权限管理系统部署教程

大家后&#xff0c;我是 jonssonyan 在上一篇文章我介绍了我的新项目——基于 SpringBoot 和 Vue.js 的权限管理系统&#xff0c;本文主要介绍该系统的部署 部署教程 这里使用 Docker 进行部署&#xff0c;Docker 基于容器技术&#xff0c;它可以占用更少的资源&#xff0c;…...

Redis篇之集群

一、主从复制 1.实现主从作用 单节点Redis的并发能力是有上限的&#xff0c;要进一步提高Redis的并发能力&#xff0c;就需要搭建主从集群&#xff0c;实现读写分离。主节点用来写的操作&#xff0c;从节点用来读操作&#xff0c;并且主节点发生写操作后&#xff0c;会把数据同…...

JUnit 5 注解总结与解析

前言 大家好&#xff0c;我是chowley&#xff0c;通过前篇的JUnit实践&#xff0c;我对这个框架产生了好奇&#xff0c;除了断言判断&#xff0c;它还有哪些用处呢&#xff1f;下面来总结一下它的常见注解及作用。 正文 在Java单元测试中&#xff0c;JUnit是一种常用的测试框…...

CSS综合案例4

CSS综合案例4 1. 综合案例 我们来做一个静态的轮播图。 2. 分析思路 首先需要加载一张背景图进去需要4个小圆点&#xff0c;设置样式&#xff0c;并用定位和平移调整位置添加两个箭头&#xff0c;也是需要用定位和位移进行调整位置 3. 代码演示 html文件 <!DOCTYPE htm…...

WifiConfigStore初始化读取-Android13

WifiConfigStore初始化读取 1、StoreData创建并注册2、WifiConfigStore读取2.1 文件读取流程2.2 时序图2.3 日志 1、StoreData创建并注册 packages/modules/Wifi/service/java/com/android/server/wifi/WifiConfigManager.java mWifiConfigStore.registerStoreData(mNetworkL…...

【Spring源码解读!底层原理进阶】【下】探寻Spring内部:BeanFactory和ApplicationContext实现原理揭秘✨

&#x1f389;&#x1f389;欢迎光临&#x1f389;&#x1f389; &#x1f3c5;我是苏泽&#xff0c;一位对技术充满热情的探索者和分享者。&#x1f680;&#x1f680; &#x1f31f;特别推荐给大家我的最新专栏《Spring 狂野之旅&#xff1a;底层原理高级进阶》 &#x1f680…...