当前位置: 首页 > news >正文

NLP_语言模型的雏形 N-Gram 模型

文章目录

  • N-Gram 模型
    • 1.将给定的文本分割成连续的N个词的组合(N-Gram)
    • 2.统计每个N-Gram在文本中出现的次数,也就是词频
    • 3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到
    • 4.可以使用这些概率来预测文本中下一个词出现的可能性。多次迭代这个过程,甚至可以生成整个句子,也可以算出每个句子在语料库中出现的概率
  • “词”是什么,如何“分词”
  • 创建一个Bigram字符预测模型
    • 1.构建实验语料库
    • 2.把句子分成N个Gram(分词)
    • 3.计算每个Bigram在语料库中的词频
    • 4.计算每个Bigram的出现概率
    • 5.根据Bigram出现的概率,定义生成下一个词的函数
    • 6.输入一个前缀,生成连续文本
  • N-Gram 模型小结


N-Gram 模型

N-Gram 模型的构建过程如下:

1.将给定的文本分割成连续的N个词的组合(N-Gram)

比如,在Bigram 模型(2-Gram 模型,即二元模型)中,我们将文本分割成多个由相邻的两个词构成的组合,称它们为“二元组”(2-Gram )。

在这里插入图片描述

2.统计每个N-Gram在文本中出现的次数,也就是词频

比如,二元组“我爱”在语料库中出现了3次(如下页图所示),即这个二元组的词频为3。
在这里插入图片描述

3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到

比如,二元组“我爱”在语料库中出现了3次,而二元组的前缀“我”在语料库中出现了10次,则给定“我”,下一个词为“爱”的概率为30%(如下图所示)。

在这里插入图片描述

4.可以使用这些概率来预测文本中下一个词出现的可能性。多次迭代这个过程,甚至可以生成整个句子,也可以算出每个句子在语料库中出现的概率

在这里插入图片描述
比如,从一个字“我”,生成“爱”,再继续生吃
成“吃”,直到“我爱吃肉”这个句子。计算“我爱”“爱吃”“吃肉”出现的概率,然后乘以各自的条件概率,就可以得到这个句子在语料库中出现的概率了。如上图所示。

“词”是什么,如何“分词”

在N-Gram 模型中,它表示文本中的一个元素,“N-Gram”指长度为N的连续元素序列。

这里的“元素”在英文中可以指单词,也可以指字符,有时还可以指“子词”(Subword );而在中文中,可以指词或者短语,也可以指字。

一般的自然语言处理工具包都为我们提供好了分词的工具。比如,英文分词通常使用 NLTK、spaCy等自然语言处理库,中文分词通常使用jieba库(中文NLP工具包),而如果你将来会用到BERT这样的预训 I练模型,那么你就需要使用BERT 的专属分词器Tokenizer,它会把每个单词拆成子词一这是 BERT处理生词的方法。

创建一个Bigram字符预测模型

在这里插入图片描述

1.构建实验语料库

# 构建一个数据集
corpus = ["小张每天喜欢学习","小张周末喜欢徒步","小李工作日喜欢加班","小李周末喜欢爬山","小张周末喜欢爬山","小李不喜欢躺平"]

2.把句子分成N个Gram(分词)

# 定义一个分词函数,将文本转换为单个字符的列表
def tokenize(text):return [char for char in text] # 将文本拆分为字符列表
# 对每个文本进行分词,并打印出对应的单字列表
print("单字列表:") 
for text in corpus:tokens = tokenize(text)print(tokens)

在这里插入图片描述

3.计算每个Bigram在语料库中的词频

# 定义计算 N-Gram 词频的函数
from collections import defaultdict, Counter # 导入所需库
def count_ngrams(corpus, n):ngrams_count = defaultdict(Counter)  # 创建一个字典,存储 N-Gram 计数for text in corpus:  # 遍历语料库中的每个文本tokens = tokenize(text)  # 对文本进行分词for i in range(len(tokens) - n + 1):  # 遍历分词结果,生成 N-Gramngram = tuple(tokens[i:i+n])  # 创建一个 N-Gram 元组prefix = ngram[:-1]  # 获取 N-Gram 的前缀token = ngram[-1]  # 获取 N-Gram 的目标单字ngrams_count[prefix][token] += 1  # 更新 N-Gram 计数return ngrams_count
bigram_counts = count_ngrams(corpus, 2) # 计算 bigram 词频
print("bigram 词频:") # 打印 bigram 词频
for prefix, counts in bigram_counts.items():print("{}: {}".format("".join(prefix), dict(counts))) 

在这里插入图片描述

4.计算每个Bigram的出现概率

# 定义计算 N-Gram 出现概率的函数
def ngram_probabilities(ngram_counts):ngram_probs = defaultdict(Counter) # 创建一个字典,存储 N-Gram 出现的概率for prefix, tokens_count in ngram_counts.items(): # 遍历 N-Gram 前缀total_count = sum(tokens_count.values()) # 计算当前前缀的 N-Gram 计数for token, count in tokens_count.items(): # 遍历每个前缀的 N-Gramngram_probs[prefix][token] = count / total_count # 计算每个 N-Gram 出现的概率return ngram_probs
bigram_probs = ngram_probabilities(bigram_counts) # 计算 bigram 出现的概率
print("\nbigram 出现的概率 :") # 打印 bigram 概率
for prefix, probs in bigram_probs.items():print("{}: {}".format("".join(prefix), dict(probs)))

在这里插入图片描述

5.根据Bigram出现的概率,定义生成下一个词的函数

# 定义生成下一个词的函数
def generate_next_token(prefix, ngram_probs):if not prefix in ngram_probs: # 如果前缀不在 N-Gram 中,返回 Nonereturn Nonenext_token_probs = ngram_probs[prefix] # 获取当前前缀的下一个词的概率next_token = max(next_token_probs, key=next_token_probs.get) # 选择概率最大的词作为下一个词return next_token

6.输入一个前缀,生成连续文本

# 定义生成连续文本的函数
def generate_text(prefix, ngram_probs, n, length=8):tokens = list(prefix) # 将前缀转换为字符列表for _ in range(length - len(prefix)): # 根据指定长度生成文本 # 获取当前前缀的下一个词next_token = generate_next_token(tuple(tokens[-(n-1):]), ngram_probs) if not next_token: # 如果下一个词为 None,跳出循环breaktokens.append(next_token) # 将下一个词添加到生成的文本中return "".join(tokens) # 将字符列表连接成字符串
# 输入一个前缀,生成文本
generated_text = generate_text("小", bigram_probs, 2)
print("\n 生成的文本:", generated_text) # 打印生成的文本

在这里插入图片描述

N-Gram 模型小结

N-Gram 是一种用于语言建模的技术,它用来估计文本中词序列的概率分布。 N-Gram 模型将文本看作一个由词序列构成的随机过程,根据已有的文本数据,计算出词序列出现的概率。因此,N-Gram主要用于语言建模、文本生成、语音识别等自然语言处理任务中。

  • (1)N-Gram是一种基于连续词序列的文本表示方法。它将文本分割成由连续的 N个词组成的片段,从而捕捉局部语序信息。
  • (2)N-Gram 可以根据不同的N值捕捉不同程度的上下文信息。例如,1-Gram(Unigram)仅关注单个词,而2-Gram(Bigram)关注相邻的两个词的组合,以此类推。
  • (3)随着N的增加,模型可能会遇到数据稀疏性问题,导致模型性能下降。

学习的参考资料:
(1)书籍
利用Python进行数据分析
西瓜书
百面机器学习
机器学习实战
阿里云天池大赛赛题解析(机器学习篇)
白话机器学习中的数学
零基础学机器学习
图解机器学习算法

动手学深度学习(pytorch)

(2)机构
光环大数据
开课吧
极客时间
七月在线
深度之眼
贪心学院
拉勾教育
博学谷
慕课网
海贼宝藏

相关文章:

NLP_语言模型的雏形 N-Gram 模型

文章目录 N-Gram 模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时&#xff0…...

mac电脑flutter环境配置,解决疑难问题

准备工作 首先搭建flutter的环境需要使用到flutter的sdk,可以直接跳去官网下载:Choose your first type of app - Flutter 中文文档 - Flutter 中文开发者网站 - Flutter,下载时要注意你电脑所使用的芯片是Intel的还是苹果的芯片。 下载好的…...

C++ bool 布尔类型

在C 中 bool类型占用1个字节长度,bool 类型只有两个取值,true 和 false,true 表示“真”,false 表示“假”。 需要注意的C中使用cout 打印的时候是没有true 和 false 的 只有0和1 ,这里0表示假,非0表示真 …...

DC-7靶机渗透详细流程

信息收集: 1.存活扫描: 由于靶机和kali都是nat的网卡,都在一个网段,我们用arp-scan会快一点: arp-scan arp-scan -I eth0 -l └─# arp-scan -I eth0 -l Interface: eth0, type: EN10MB, MAC: 00:0c:29:dd:ee:6…...

提速MySQL:数据库性能加速策略全解析

提速MySQL:数据库性能加速策略全解析 引言理解MySQL性能指标监控和评估性能指标索引优化技巧索引优化实战案例 查询优化实战查询优化案例分析 存储引擎优化InnoDB vs MyISAM选择和优化存储引擎存储引擎优化实例 配置调整与系统优化配置调整系统优化优化实例 实战案例…...

Flink实战六_直播礼物统计

接上文:Flink实战五_状态机制 1、需求背景 现在网络直播平台非常火爆,在斗鱼这样的网络直播间,经常可以看到这样的总榜排名,体现了主播的人气值。 人气值计算规则:用户发送1条弹幕互动,赠送1个荧光棒免费…...

Compose | UI组件(十五) | Scaffold - 脚手架

文章目录 前言一、Scaffold脚手架简介二、Scaffold的主要组件三、如何使用Scaffold四、Compose中Scaffold脚手架的具体例子例子1:基本Scaffold布局例子2:带有Drawer的Scaffold布局例子3:带有Snackbar的Scaffold布局 总结 前言 Compose中的Sca…...

Vue-60、Vue技术router-link的replace属性

1、作用&#xff1a;控制路由跳转时操作浏览器历史记录的模式 2、浏览器的历史记录有两种写入方式&#xff1a;分别是push和replace,push是追加历史记录&#xff0c;replace是替换当前记录。路由跳转时候默认为push 3、如何开启replace模式&#xff1a; <router-link rep…...

Hive与Presto中的列转行区别

Hive与Presto列转行的区别 1、背景描述2、Hive/Spark列转行3、Presto列转行 1、背景描述 在处理数据时&#xff0c;我们经常会遇到一个字段存储多个值&#xff0c;这时需要把一行数据转换为多行数据&#xff0c;形成标准的结构化数据 例如&#xff0c;将下面的两列数据并列转换…...

探讨CSDN等级制度:博客等级、原力等级、创作者等级

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;Vir2021GKBS &#x1f43c;本文由…...

2.8作业

sqlite3数据库操作接口详细整理&#xff0c;以及常用的数据库语句 头文件&#xff1a; #include <sqlite3.h> 编译时候要加上-lsqlite3 gcc a.c -lsqlite3 1&#xff09;sqlite3_open 打开一个数据库&#xff0c;如果数据库不存在&#xff0c;则创建一个数据库 2&am…...

机器学习中常用的性能度量—— ROC 和 AUC

什么是泛化能力&#xff1f; 通常我们用泛化能力来评判一个模型的好坏&#xff0c;通俗的说&#xff0c;泛化能力是指一个机器学期算法对新样本&#xff08;即模型没有见过的样本&#xff09;的举一反三的能力&#xff0c;也就是学以致用的能力。 举个例子&#xff0c;高三的…...

微服务入门篇:Nacos注册中心(Nacos安装,快速入门,多级存储,负载均衡,环境隔离,配置管理,热更新,集群搭建,nginx反向代理)

目录 1.Nacos安装1.官网下载2.解压到本地3.启动nacos 2.Nacos快速入门1.在父工程中导入nacos依赖2.给子项目添加客户端依赖3.修改对应服务的配置文件4.启动服务&#xff0c;查看nacos发现情况 3.Nacos服务多级存储模型4.NacosRule负载均衡5. 服务实例的权重设置6.环境隔离&…...

解决CORS错误(Spring Boot)

记录一下错误&#xff0c;以博客的形式 前言 跨域&#xff08;Cross-Origin&#xff09;是指在Web开发中&#xff0c;当一个Web应用试图从一个源&#xff08;域名、协议、端口组合&#xff09;获取资源时&#xff0c;该请求的目标与当前页面的源不同。具体来说&#xff0c;当一…...

NLP入门系列—词嵌入 Word embedding

NLP入门系列—词嵌入 Word embedding 2013年&#xff0c;Word2Vec横空出世&#xff0c;自然语言处理领域各项任务效果均得到极大提升。自从Word2Vec这个神奇的算法出世以后&#xff0c;导致了一波嵌入&#xff08;Embedding&#xff09;热&#xff0c;基于句子、文档表达的wor…...

JUnit5单元测试框架提供的注解

目录 第一章、注释在类上的注解1.1&#xff09;JUnit5注释在类上的注解集成测试&#xff1a;SpringBootTest集成测试&#xff1a;ExtendWith(SpringExtension.class)单元测试&#xff1a;ExtendWith(MockitoExtension.class)切片测试:WebMvcTest和DataJpaTest<font colorred…...

ThinkPHP 中使用Redis

环境.env [app] app_debug "1" app_trace ""[database] database "" hostname "127.0.0.1" hostport "" password "" prefix "ls_" username ""[redis] hostname "127.0.0.1…...

Go语言Gin框架安全加固:全面解析SQL注入、XSS与CSRF的解决方案

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。 前言 在使用 Gin 框架处理前端请求数据时&#xff0c;必须关注安全性问题&#xff0c;以防范常见的攻击…...

MySQL数据库基础与SELECT语句使用梳理

MySQL数据库基础与SELECT语句使用梳理 注意&#xff1a;本文操作全部在终端进行 数据库基础知识 什么是数据库 数据库&#xff08;database&#xff09;是保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;&#xff0c;实质上数据库是一个以某种 有组…...

scikit-learn 1.3.X 版本 bug - F1 分数计算错误

如果您正在使用 scikit-learn 1.3.X 版本&#xff0c;在使用 f1_score() 或 classification_report() 函数时&#xff0c;如果参数设置为 zero_division1.0 或 zero_divisionnp.nan&#xff0c;那么函数的输出结果可能会出错。错误的范围可能高达 100%&#xff0c;具体取决于数…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...