当前位置: 首页 > news >正文

Android14音频进阶:MediaPlayerService如何启动AudioTrack 下篇(五十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长!

优质专栏:Audio工程师进阶系列原创干货持续更新中……】🚀
优质专栏:多媒体系统工程师系列原创干货持续更新中……】🚀

人生格言: 人生从来没有捷径,只有行动才是治疗恐惧和懒惰的唯一良药.

更多原创,欢迎关注:Android系统攻城狮

欢迎关注Android系统攻城狮

<

相关文章:

Android14音频进阶:MediaPlayerService如何启动AudioTrack 下篇(五十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒体系统工程师系列【原创干货持续更新中……】🚀 人生格言: 人生从来没有捷径,只…...

Python基础篇_修饰符(Decorators)【下】

上一篇&#xff1a;Python基础篇_修饰符&#xff08;Decorators&#xff09;【中】property、<attribute_name>.setter、<attribute_name>.deleter、functools.lru_cache(maxsizeNone) Python基础篇_修饰符&#xff08;Decorators&#xff09;【下】 Python基础篇_…...

C#,十进制展开数(Decimal Expansion Number)的算法与源代码

1 十进制展开数 十进制展开数&#xff08;Decimal Expansion Number&#xff09;的计算公式&#xff1a; DEN n^3 - n - 1 The decimal expansion of a number is its representation in base -10 (i.e., in the decimal system). In this system, each "decimal place…...

Vue3快速上手(一)使用vite创建项目

一、准备 在此之前&#xff0c;你的电脑&#xff0c;需要安装node.js,我这边v18.19.0 wangdymb 2024code % node -v v18.19.0二、创建 执行npm create vuelatest命令即可使用vite创建vue3项目 有的同学可能卡主不动&#xff0c;可能是npm的registry设置的问题 先看下&#x…...

使用navicat导出mysql离线数据后,再导入doris的方案

一、背景 doris本身是支持直接从mysql中同步数据的&#xff0c;但有时候&#xff0c;客户不允许我们使用doris直连mysql&#xff0c;此时就需要客户配合将mysql中的数据手工导出成离线文件&#xff0c;我们再导入到doris中 二、环境 doris 1.2 三、方案 doris支持多种导入…...

re:从0开始的CSS学习之路 1. CSS语法规则

0. 写在前面 现在大模型卷的飞起&#xff0c;感觉做页面的活可能以后就不需要人来做了&#xff0c;不知道现在还有没有学前端的必要。。。 1. HTML和CSS结合的三种方式 在HTML中&#xff0c;我们强调HTML并不关心显示样式&#xff0c;样式是CSS的工作&#xff0c;现在就轮到C…...

npm install express -g报错或一直卡着,亲测可解决

问题描述&#xff1a; 最近学习vue3前端框架&#xff0c;安装Node.js之后&#xff0c;在测试是否可行时&#xff0c;cmd窗口执行了&#xff1a;npm install express -g&#xff0c;发现如下图所示一直卡着不动&#xff0c;最后还报错了&#xff0c;网上找了好久&#xff0c;各…...

机器学习11-前馈神经网络识别手写数字1.0

在这个示例中&#xff0c;使用的神经网络是一个简单的全连接前馈神经网络&#xff0c;也称为多层感知器&#xff08;Multilayer Perceptron&#xff0c;MLP&#xff09;。这个神经网络由几个关键组件构成&#xff1a; 1. 输入层 输入层接收输入数据&#xff0c;这里是一个 28x…...

vscode wsl远程连接 权限问题

问题描述&#xff1a;执行命令时遇到Operation not permitted 和 Permission denied问题&#xff0c;是有关ip地址和创建文件的权限问题&#xff0c;参考网络上更改wsl.conf文件等方法均无法解决&#xff0c;只能加sudo来解决...

VED-eBPF:一款基于eBPF的内核利用和Rootkit检测工具

关于VED-eBPF VED-eBPF是一款功能强大的内核漏洞利用和Rootkit检测工具&#xff0c;该工具基于eBPF技术实现其功能&#xff0c;可以实现Linux操作系统运行时内核安全监控和漏洞利用检测。 eBPF是一个内核内虚拟机&#xff0c;它允许我们直接在内核中执行代码&#xff0c;而无…...

配置ARM交叉编译工具的通用步骤

ARM交叉编译工具是用于编译在ARM架构上运行的代码的工具。这些工具允许开发者在一种架构&#xff08;通常是x86或x64&#xff09;上编写和编译代码&#xff0c;然后将其移植到ARM架构上运行。 ARM交叉编译工具链通常包括编译器、链接器、调试器和其他必要的工具&#xff0c;用…...

相机图像质量研究(5)常见问题总结:光学结构对成像的影响--景深

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…...

使用django构建一个多级评论功能

&#xff0c;评论系统是交流和反馈的重要工具&#xff0c;尤其是多级评论系统&#xff0c;它允许用户回复特定评论&#xff0c;形成丰富的对话结构。这个文章是使用Django框架从零开始构建一个多级评论系统。Django是一个高级Python Web框架&#xff0c;它鼓励快速开发和干净、…...

测试管理_利用python连接禅道数据库并自动统计bug数据到钉钉群

测试管理_利用python连接禅道数据库并统计bug数据到钉钉 这篇不多赘述&#xff0c;直接上代码文件。 另文章基础参考博文&#xff1a;参考博文 加以我自己的需求优化而成。 统计的前提 以下代码统计的前提是禅道的提bug流程应规范化 bug未解决不删除bug未关闭不删除 db_…...

Python 小白的 Leetcode Daily Challenge 刷题计划 - 20240209(除夕)

368. Largest Divisible Subset 难度&#xff1a;Medium 动态规划 方案还原 Yesterdays Daily Challenge can be reduced to the problem of shortest path in an unweighted graph while todays daily challenge can be reduced to the problem of longest path in an unwe…...

BFS——双向广搜+A—star

有时候从一个点能扩展出来的情况很多&#xff0c;这样几层之后搜索空间就很大了&#xff0c;我们采用从两端同时进行搜索的策略&#xff0c;压缩搜索空间。 190. 字串变换(190. 字串变换 - AcWing题库) 思路&#xff1a;这题因为变化规则很多&#xff0c;所以我们一层一层往外…...

LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT

如下图所示&#xff0c;LLM仍然是自治代理的backbone&#xff0c;可以通过给LLM增加以下模块来增强LLM功能: Prompter AgentChecker ModuleMemory moduleToT controller 当解决具体问题时&#xff0c;这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况&#xff0c;…...

新零售的升维体验,摸索华为云GaussDB如何实现数据赋能

新零售商业模式 商业模式通常是由客户价值、企业资源和能力、盈利方式三个方面构成。其最主要的用途是为实现客户价值最大化。 商业模式通过把能使企业运行的内外各要素整合起来&#xff0c;从而形成一个完整的、高效率的、具有独特核心竞争力的运行系统&#xff0c;并通过最…...

vscode +git +gitee 文件管理

文章目录 前言一、gitee是什么&#xff1f;2. Gitee与VScode连接大概步骤 二、在vscode中安装git1.安装git2.安装过程3.安装完后记得重启 三、使用1.新建文件夹first2.vscode 使用 四、连接git1.初始化仓库2.设置git 提交用户和邮箱3.登陆gitee账号新建仓库没有的自己注册一个4…...

【力扣】用栈判断有效的括号

有效的括号原题地址 方法一&#xff1a;栈 对于特殊情况&#xff0c;当字符串的长度为奇数时&#xff0c;一定不是有效的括号。 对于一般情况&#xff0c;考虑使用数据结构栈。 遍历字符串&#xff0c; 遇到左括号时&#xff0c;就入栈。遇到右括号时&#xff0c; 若栈顶元…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

C#学习第29天:表达式树(Expression Trees)

目录 什么是表达式树&#xff1f; 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持&#xff1a; 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

【iOS】 Block再学习

iOS Block再学习 文章目录 iOS Block再学习前言Block的三种类型__ NSGlobalBlock____ NSMallocBlock____ NSStackBlock__小结 Block底层分析Block的结构捕获自由变量捕获全局(静态)变量捕获静态变量__block修饰符forwarding指针 Block的copy时机block作为函数返回值将block赋给…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...