当前位置: 首页 > news >正文

Element-Ui el-date-picker日期传值异常问题解决办法

首先,只要非常简单的组件引入写法:

然后myDate在data()中是字符串类型
myDate: ‘’

然后增加一个方法在提交表单到后台的时候,用来转化日期对应到myDate成字符串类型,并且对应到java类

function checkType(value) {if (typeof value === 'string') {console.log('This value is a string.');} else if (value instanceof Date) {console.log('This value is a Date.');} else {console.log('This value is neither a string nor a Date.');}
}let dateString = '2023-10-11';
let dateObject = new Date('2023-10-11');

注意点选的日期会是Date()类型

let date = new Date();
let dateString = `${date.getFullYear()}-${(date.getMonth() + 1).toString
().padStart(2, '0')}-${date.getDate().toString().padStart(2, '0')}`;
console.log(dateString); // Outputs: "2023-10-11"

以上代码汇总:

<el-date-picker v-model="myDate"></el-date-picker>myDate: ''function checkType(value) {if (typeof value === 'string') {return value.replace(/\//g, "-")} else if (value instanceof Date) {let dateString = `${date.getFullYear()}-${(date.getMonth() + 1).toString
().padStart(2, '0')}-${date.getDate().toString().padStart(2, '0')}`
return dateString} else {console.log('This value is neither a string nor a Date.');}
}formDate.completeDate = dateString

java对应参数类

@JsonFormat(pattern="yyyy-MM-dd", timezone="Asia/Shanghai")
private Date completeDate;

注意特殊情况:

v-model中不要连续嵌套多个变量比如:

如果有多个变量嵌套的情况,则v-model先绑定到一个中介变量,然后通过watch中介变量,转换格式后,再对
a.b.c.myDate赋值。

另外,直接选择日期的时候,一般其实个Date对象,但是很多人会将myDate直接声明为’',所以才会出现可能不能点选的问题,所以才会引入以上需要转化之类的操作。

相关文章:

Element-Ui el-date-picker日期传值异常问题解决办法

首先&#xff0c;只要非常简单的组件引入写法&#xff1a; 然后myDate在data()中是字符串类型 myDate: ‘’ 然后增加一个方法在提交表单到后台的时候&#xff0c;用来转化日期对应到myDate成字符串类型&#xff0c;并且对应到java类 function checkType(value) {if (typeo…...

GO语言集成开发 JetBrains GoLand 2023 中文

JetBrains GoLand 2023是一款专为Go语言开发者打造的集成开发环境&#xff08;IDE&#xff09;。它基于IntelliJ IDEA平台&#xff0c;提供了丰富的功能和工具&#xff0c;旨在提高开发效率和质量。GoLand 2023具备强大的Go语言支持&#xff0c;包括语法高亮、自动补全、代码提…...

详细关于如何解决mfc140.dll丢失的步骤,有效修复mfc140.dll文件丢失的问题。

mfc140.dll文件是Microsoft Visual Studio 2015程序集之一&#xff0c;它包含用于支持多种功能的代码和库。当这个mfc140.dll文件丢失时&#xff0c;可能会导致相关程序运行出错甚至无法运行。很多用户可能会遇到mfc140.dll丢失的问题&#xff0c;但是这并不是不可解决的困难。…...

聚簇索引、非聚簇索引、回表、索引下推、覆盖索引

聚簇索引&#xff08;主键索引&#xff09; 非叶子节点上存储的是索引值&#xff0c;叶子节点上存储的是整行记录。 非聚簇索引&#xff08;非主键索引、二级索引&#xff09; 非叶子节点上存储的都是索引值&#xff0c;叶子节点上存储的是主键的值。非聚簇索引需要回表&…...

ES实战-book笔记1

#索引一个文档,-XPUT手动创建索引, curl -XPUT localhost:9200/get-together/_doc/1?pretty -H Content-Type: application/json -d {"name": "Elasticsearch Denver","organizer": "Lee" } #返回结果 {"_index" : "g…...

高防服务器出租的优势及特点

高防服务器出租是指租用具备高防御能力的服务器&#xff0c;用于应对网络攻击、保护网站和数据安全。那么为什么会选择高防服务器出租&#xff0c;小编为您整理发布高防服务器出租的优势及特点。 高防服务器通常具备以下特点&#xff1a; 1. 高性能硬件配置&#xff1a;高防服务…...

NTLM||LM算法lsasswinlogon进程

来填坑了&#xff0c;这篇blog我们就来讲一下mimikatz能抓到开机的密码的原理 1.lsass&&winlogon 不知道大家有没有好奇过&#xff0c;我们每次开机输入密码之后&#xff0c;电脑又怎么知道我们是否输入正确呢&#xff1f; &#xff1a;这就要的得益于我们的两个进程…...

transformer剪枝论文汇总

文章目录 NN Pruning摘要实验 大模型剪枝LLM-PrunerSparseGPT LTPVTPWidth & Depth PruningPatch SlimmingDynamicViTSPViTDynamicBERTViT SlimmingFastFormersNViTUVCPost-training pruning NN Pruning 《Block Pruning For Faster Transformers》 《为更快的transformer…...

使用 Ant Design 的 Upload 组件实现图片

文章目录 使用 Ant Design 的 Upload 组件实现图片Upload组件itemRender自定义上传列表项的渲染方式修改图片名上传图片上传链接中添加 Bearer Token 的请求头onPreview{handlePreview}上传成功后&#xff0c;如何隐藏上传列表 使用 Ant Design 的 Upload 组件实现图片 Upload…...

【知识图谱--第二讲知识图谱的表示】

知识图谱的表示 知识表示Knowledge Representation 知识表示方法知识图谱的符号表示基于图的知识表示与建模简单图建模-最简单的无向图有向标记图OWL与Ontology 知识图谱的向量表示 知识表示 Knowledge Representation 知识表示&#xff08;KR&#xff09;就是用易于计算机处…...

C语言---计算n的阶乘

阶乘的概念&#xff1a;一个正整数的阶乘&#xff08;factorial&#xff09;是所有小于及等于该数的正整数的积&#xff0c;且0的阶乘为1&#xff0c;自然数n的阶乘写作n! 。 任何大于等于1 的自然数n 阶乘表示方法&#xff1a; n!123…(n-1)n 或 n!n(n-1)! 0&#xff01;1 …...

材料非线性Matlab有限元编程:初应力法与初应变法

导读:本文主要围绕材料非线性问题的有限元Matlab编程求解进行介绍,重点围绕牛顿-拉普森法(切线刚度法)、初应力法、初应变法等三种非线性迭代方法的算法原理展开讲解,最后利用Matlab对材料非线性问题有限元迭代求解算法进行实现,展示了实现求解的核心代码。这些内容都将收…...

QT+OSG/osgEarth编译之八十二:osgdb_obj+Qt编译(一套代码、一套框架,跨平台编译,版本:OSG-3.6.5插件库osgdb_obj)

文章目录 一、osgdb_obj介绍二、文件分析三、pro文件四、编译实践一、osgdb_obj介绍 OBJ格式是一种标准的3D模型文件格式,它以纯文本形式存储关于3D模型的信息。这种格式最初由Wavefront Technologies为其高级可视化系统开发,后来被广泛应用于3D软件之间的数据交换。OBJ格式…...

[office] excel求乘积的公式和方法 #媒体#笔记#经验分享

excel求乘积的公式和方法 本文首先给出两个常规的excel求乘积的链接&#xff0c;然后再例举了一个文字和数字在同一单元格里面的excel求乘积的公式写法。 excel求乘积的方法分为两种&#xff0c;第一种是直接用四则运算的*来求乘积&#xff0c;另外一种就是使用PRODUCT乘积函数…...

OpenEuler20.03LTS SP2 上安装 OpenGauss3.0.0 单机部署过程(二)

开始安装 OpenGauss 数据库 3.1.7 安装依赖包 (说明:如果可以联网,可以通过网络 yum 安装所需依赖包,既可以跳过本步骤。如果网络无法连通,请把本文档所在目录下的依赖包上传到服务器上,手工安装后,即无需通过网络进行 Yum 安装了): 上传:libaio-0.3.111-5.oe1.x8…...

从零开始手写mmo游戏从框架到爆炸(十)— 集成springboot-jpa与用户表

导航&#xff1a;从零开始手写mmo游戏从框架到爆炸&#xff08;零&#xff09;—— 导航-CSDN博客 集成springboot-jpa&#xff0c;不用mybatis框架一个是方便对接不同的数据源。第二个目前规划的游戏内容可能对数据库的依赖不是很大&#xff0c;jpa应该肯定能满足要求了…...

Python算法题集_两两交换链表中的节点

Python算法题集_两两交换链表中的节点 题24&#xff1a;两两交换链表中的节点1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【四节点法】2) 改进版一【列表操作】3) 改进版二【三指针法】4) 改进版三【递归大法】 4. 最优算法 本文为Python算法…...

米贸搜|Facebook在购物季使用的Meta广告投放流程

一、账户简化 当广告系列开始投放后&#xff0c;每个广告组都会经历一个初始的“机器学习阶段”。简化账户架构可以帮助AI系统更快获得广告主所需的成效。例如&#xff1a; 每周转化次数超过50次的广告组&#xff0c;其单次购物费用要低28%&#xff1b;成功结束机器学习阶段的…...

前端滚动组件分享

分享一个前端可视化常用的卡片列表滚动组件&#xff0c;常用于可视化项目左右两侧的卡片列表的滚动。效果如下图所示&#xff1a; 组件描述 当鼠标移入滚动区域时&#xff0c;滚动行为停止当鼠标再次离开时&#xff0c;滚动继续 源码展示 <template><div ref"…...

【linux开发工具】vim详解

&#x1f4d9; 作者简介 &#xff1a;RO-BERRY &#x1f4d7; 学习方向&#xff1a;致力于C、C、数据结构、TCP/IP、数据库等等一系列知识 &#x1f4d2; 日后方向 : 偏向于CPP开发以及大数据方向&#xff0c;欢迎各位关注&#xff0c;谢谢各位的支持 “学如逆水行舟&#xff0…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

高分辨率图像合成归一化流扩展

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 1 摘要 我们提出了STARFlow&#xff0c;一种基于归一化流的可扩展生成模型&#xff0c;它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流&#xff08;TARFlow&am…...