当前位置: 首页 > news >正文

ElasticSearch之倒排索引

写在前面

本文看下es的倒排索引相关内容。

1:正排索引和倒排索引

正排索引就是通过文档id找文档内容,而倒排索引就是通过文档内容找文档id,如下图:
在这里插入图片描述

2:倒排索引原理

假定我们有如下的数据:
在这里插入图片描述
为了建立倒排索引,我们需要先对文档进行分词,如下:
在这里插入图片描述
分词后每一个词有一个专门的名词来表示,叫做Term,term就是我们要搜索的目标,但是找到了term并不能找到文档,为了找到文档,每一个term对应一个[<文档id,偏移量,出现次数>]的数组,这个数组我们叫做Posting List,其中每个term对应一个Posing List,如下图:
在这里插入图片描述
为了方便查找term,term+Posing List组合在字典的数据结构,叫做Term Dictionary(注意term是排好序的,所以可以顺序查找,后面会用到!!!),如下图:
在这里插入图片描述
这样,当我们搜索Elasticsearch,可以通过Term Disctionary,查到对应的term,然后通过term就可以找到对应的PosingList,就找到文档了,这个过程如下:
在这里插入图片描述
但,实际上我们搜索的关键词,是没有办法直接按照上述流程找到term的,因为term dictionary比较大,是保存在磁盘上的,直接基于磁盘查找,速度就可想而知了,所以,es还设计了另外一种数据结果term index,用来在内存中保存关键词对应的term磁盘页位置,term index是一种基于trie tree的数据结构,大概如下图:
在这里插入图片描述
其中红色的就是位置信息,但是注意在term index中只会存储前缀,所以可以定位到一个大概的位置,而因为term是顺序存储的,所以可以顺序读盘,找到目标term,这里我们简单的以直接定位到term为例看下这个过程:
在这里插入图片描述
最后,es为了能够将term index存储在内存中,还是用了FST的算法,来压缩空间。则最终查找过程就如下图了:
在这里插入图片描述

以上过程分词是及其重要的一个环节,所以我们接下来也来看下分词相关的内容。

3:分词

3.1:什么是分词和分词器

分词:analysis,即将一句话分为多个词(term)的过程。

分词器:analyzer,完成分词这个操作的工具。

如下图:

在这里插入图片描述

所以,分词是个动词,分词器是个名词。

分词器在我们写入数据构建倒排索引的时候会用到,在输入一句话进行搜索的时候也会用到。

3.2:分词器的工作原理

一个标准的分词器由以下三部分组成:

Charancter Filters:对原始的内容进行处理,如删除html字符,等
Tokenizer:按照某种规则切分为一组单词(term),这部分功能不仅每种分词器都有,而且还可能包含Token Filters的功能(可以看作是分词器的非标准实现)
Token Filters:对切分后的次进行处理,如转小写,删除停用词等

如下简单例子:
在这里插入图片描述

注意这只是一个标准的分词器需要具备的三个部分,但除了Tokennizer必须提供具体的实现外,Chracter Filters和Token Filters并不是必须提供实现的。

3.3:分词器都有哪些

在这里插入图片描述
为了方便你我们查看不同的分词效果,es提供了_analysis 的rest api,如下:
在这里插入图片描述

3.3.1:Standard Analyzer

默认分词器,标准分词器三部分提供如下:

charanter Filters:无
Tokennizer:按词切分,就是按照空格切分吧
Token Filters:小写处理

如下图:
在这里插入图片描述
首先,我们来看下standard analyzer的执行效果:
在这里插入图片描述
可以看到只是空格划分后转小写了。
如果我们想要启动token fitlers中的停用词该怎么办呢?可以这样,我们来自定义一个分词器,并指定配置,因为在es中自定义分词需要定义在索引下,所以我们需要指定索引来创建(其实就是设置索引的setting),如下:

PUT standard_analyzer_token_length_conf1_index
{"settings": {"analysis": {"analyzer": {"english_1analyzer":{"type":"standard","max_token_length":5,"stopwords":"_english_"}}}}
}

在这里插入图片描述
在索引standard_analyzer_token_length_conf1_index中我们定义了一个名称为english_1analyzer的自定义索引,其中的配置项如下:

"type":"standard",基于standard分词器
"max_token_length":5,token最大长度为5,即如果term长度大于5则回分为2个,如ABCDEFGHI,会分为ABCDE和FGHI
"stopwords":"_english_"使用标准的eglish停用词语,也可以通过stopwords_path来指定停用词

测试如下:
在这里插入图片描述
可以看到is a这些就没了,并且每个term的最大长度是5,超过5的也被分成了多个。

3.3.2:Simple Analyzer

简单分词器,标准分词器三部分提供如下:

Charanter filters:不提供实现
Tokennizer:按照非字母进行切分(可对比standard分词器只按照空格进行切分),然后还抢了本该属于Token Filters的活,会转小写
Token filters:不提供实现

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.3:White space Analyzer

空格分词器,标准分词器三部分提供如下:

Character Filters:不提供实现
Tokenizer:按照空格切分(简单粗暴)
Token Filters:不提供实现

v
测试如下:
在这里插入图片描述

3.3.4:stop anylizer

停用词分词器,标准分词器三部分提供如下:

Character Filters:不提供实现
Tokenizer:按照空格切分
Token Filters:删除is,a等修饰词

可以看到相比于simple analyzer,只是多了tokenfilters的删除修饰词功能。
在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.5:keyword anylizer

关键词分词器,标准分词器三部分提供如下:

Charater Fitlers:不提供实现
Tokennizer:原样输出,也是一种特殊的分割,不是嘛!!!
Token Filters:不提供实现

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.6:Pattern anylizer

模式分词器,标准分词器三部分提供如下:

Character Fiters:不提供实现
Tokennizer:默认按照\W+进行分割,即按照[0-9a-zA-Z_]之外的字符进行分割
Token Fiters:转小写,以及停用词

在这里插入图片描述
测试如下:
在这里插入图片描述

3.3.7:language anylizer

这并不是一个分词器,而是一组分词器,一组针对特定语言的分词器,支持语言如下:
在这里插入图片描述
以english为例看下,其token filters还会将一些特定语态的单词变为正常的,如xxxIng变为xxx,如:
在这里插入图片描述

3.3.8:中文分词

因为中华文字,博大精深,变化多端,所以分词的难度相当之大,具体点如下:
在这里插入图片描述
为了测试中文分词我们可以来自定义一个安装了ik插件的新镜像,参考docker自定义镜像并使用 。只需要将docker-compose中的es imga改成我们自己定义的就可以测试了,如:
在这里插入图片描述

3.3.9:自定义分词器

https://blog.csdn.net/weixin_28906733/article/details/106610972 如果希望自定义一个与standard类似的analyzer,只需要在原定义

  • 自定义一个与standard类似的analyzer
    先再来看下standard分词器:
charanter Filters:无
Tokennizer:按词切分,就是按照空格切分吧
Token Filters:小写处理

定义和使用:

//测试自定义analyzer
PUT custom_rebuild_standard_analyzer_index
{"settings": {"analysis": {"analyzer": {"rebuild_analyzer":{"type":"custom","tokenizer":"standard","filter":["lowercase"]}}}}
}//测试请求参数
POST custom_rebuild_standard_analyzer_index/_analyze
{"text": "transimission control protocol is a transport layer protocol"
}
  • 自定义一个与simple类似的analyzer
    先再来看下simple分词器:
Charanter filters:不提供实现
Tokennizer:按照非字母进行切分(可对比standard分词器只按照空格进行切分),然后还抢了本该属于Token Filters的活,会转小写
Token filters:不提供实现

测试和使用:

//测试自定义analyzer
PUT custom_rebuild_simple_analyzer_index
{"settings": {"analysis": {"analyzer": {"rebuild_simple":{"tokenizer":"lowercase","filter":[]}}}}
}//测试请求参数
POST custom_rebuild_simple_analyzer_index/_analyze
{"text": "transimission control protocol is a transport layer protocol"
}

写在后面

参考文章列表

Elasticsearch 学习笔记

Elasticsearch是如何做到快速索引的

相关文章:

ElasticSearch之倒排索引

写在前面 本文看下es的倒排索引相关内容。 1&#xff1a;正排索引和倒排索引 正排索引就是通过文档id找文档内容&#xff0c;而倒排索引就是通过文档内容找文档id&#xff0c;如下图&#xff1a; 2&#xff1a;倒排索引原理 假定我们有如下的数据&#xff1a; 为了建立倒…...

win11安装mysql8.3.0压缩包版 240206

mysql社区版安装包版windows安装包下载地址 在系统环境变量path无点.的情况下 powershell 可以 .\ 或 ./ 开头表示当前文件夹cmd 可以直接命令或.\开头, 不能./开头 所以 .\ 在cmd和powershell中通用 步骤 在解压目录 .\mysqld --initialize-insecure root无密码初始化.\m…...

数据库索引与优化:深入了解索引的种类、使用与优化

数据库索引与优化&#xff1a;深入了解索引的种类、使用与优化 索引的种类 数据库索引是提高查询速度的重要手段之一&#xff0c;主要分为以下几种类型&#xff1a; 主键索引&#xff08;Primary Key Index&#xff09;&#xff1a; 唯一标识表中的每一行数据&#xff0c;保…...

React 错误边界组件 react-error-boundary 源码解析

文章目录 捕获错误 hook创建错误边界组件 Provider定义错误边界组件定义边界组件状态捕捉错误渲染备份组件重置组件通过 useHook 控制边界组件 捕获错误 hook getDerivedStateFromError 返回值会作为组件的 state 用于展示错误时的内容 componentDidCatch 创建错误边界组件 P…...

分享66个相册特效,总有一款适合您

分享66个相册特效&#xff0c;总有一款适合您 66个相册特效下载链接&#xff1a;https://pan.baidu.com/s/1jqctaho4sL_iGSNExhWB6A?pwd8888 提取码&#xff1a;8888 Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 学习知识费力气&#xff0c;收集整理更不…...

chagpt的原理详解

GPT&#xff08;Generative Pre-trained Transformer&#xff09;是一种基于Transformer架构的生成式预训练模型。GPT-3是其中的第三代&#xff0c;由OpenAI开发。下面是GPT的基本原理&#xff1a; Transformer架构&#xff1a; GPT基于Transformer架构&#xff0c;该架构由Att…...

dockerfile 详细讲解

当编写 Dockerfile 时&#xff0c;你需要考虑你的应用程序所需的环境和依赖项&#xff0c;并将其描述为一系列指令。下面是一个简单的示例&#xff0c;演示如何编写一个用于部署基于 Node.js 的网站的 Dockerfile&#xff1a; Dockerfile # 使用官方 Node.js 镜像作为基础镜像…...

跟着pink老师前端入门教程-day23

苏宁网首页案例制作 设置视口标签以及引入初始化样式 <meta name"viewport" content"widthdevice-width, user-scalableno, initial-scale1.0, maximum-scale1.0, minimum-scale1.0"> <link rel"stylesheet" href"css/normaliz…...

JRT监听程序

本次设计避免以往设计缺陷&#xff0c;老的主要为了保持兼容性&#xff0c;在用的设计就不好调了。 首先&#xff0c;接口抽象时候就不在给参数放仪器ID和处理类了&#xff0c;直接放仪器配置实体&#xff0c;接口实现想用什么属性就用什么属性&#xff0c;避免老方式要扩参数时…...

MCU+SFU视频会议一体化,视频监控,指挥调度(AR远程协助)媒体中心解决方案。

视频互动应用已经是政务和协同办公必备系统&#xff0c;早期的分模块&#xff0c;分散的视频应该不能满足业务需要&#xff0c;需要把视频监控&#xff0c;会议&#xff0c;录存一体把视频资源整合起来&#xff0c;根据客户需求&#xff0c;需要能够多方视频互动&#xff0c;直…...

1184. 欧拉回路(欧拉回路,模板题)

活动 - AcWing 给定一张图&#xff0c;请你找出欧拉回路&#xff0c;即在图中找一个环使得每条边都在环上出现恰好一次。 输入格式 第一行包含一个整数 t&#xff0c;t∈{1,2}&#xff0c;如果 t1&#xff0c;表示所给图为无向图&#xff0c;如果 t2&#xff0c;表示所给图为…...

学习 Redis 基础数据结构,不讲虚的。

学习 Redis 基础数据结构&#xff0c;不讲虚的。 一个群友给我发消息&#xff0c;“该学的都学了&#xff0c;怎么就找不到心意的工作&#xff0c;太难了”。 很多在近期找过工作的同学一定都知道了&#xff0c;背诵八股文已经不是找工作的绝对王牌。企业最终要的是可以创造价…...

Android 11 webview webrtc无法使用问题

问题&#xff1a;Android 11 webview 调用webrtc无法使用, 看logcat日志会报如下错误 [ERROR:address_tracker_linux.cc(245)] Could not send NETLINK request: Permission denied (13) 查了下相关的网络权限都有配置了还是不行&#xff0c;还是报这个权限问题 原因&#xff1…...

嵌入式单片机中晶振的工作原理

晶振在单片机中是必不可少的元器件&#xff0c;只要用到CPU的地方就必定有晶振的存在&#xff0c;那么晶振是如何工作的呢&#xff1f; 什么是晶振 晶振一般指晶体振荡器&#xff0c;晶体振荡器是指从一块石英晶体上按一定方位角切下的薄片&#xff0c;简称为晶片。 石英晶体谐…...

AWS配置内网EC2服务器上网【图形化配置】

第一种方法&#xff1a;创建EC2选择启用分配公网ip 1. 创建vpc 2. 创建子网 3. 创建互联网网关 创建互联网网关 创建互联网网关 &#xff0c;设置名称即可 然后给网关附加到新建的vpc即可 4. 给新建子网添加路由规则&#xff0c;添加新建的互联网网关然后点击保存更改 5. 新建…...

Android中的MVVM

演变 开发常用的框架包括MVC、MVP和本文的MVVM&#xff0c;三种框架都是为了分离ui界面和处理逻辑而出现的框架模式。mvp、mvvm都由mvc演化而来&#xff0c;他们不属于某种语言的框架&#xff0c;当存在ui页面和逻辑代码时&#xff0c;我们就可以使用这三种模式。 model和vie…...

制作耳机壳的UV树脂和塑料材质相比劣势有哪些?

以下是UV树脂相比塑料材质可能存在的劣势&#xff1a; 价格较高&#xff1a;相比一些常见的塑料材质&#xff0c;UV树脂的价格可能较高。这主要是因为UV树脂的生产过程较为复杂&#xff0c;需要较高的技术和设备支持。加工难度大&#xff1a;虽然UV树脂的加工过程相对简单&…...

CSP-202012-1-期末预测之安全指数

CSP-202012-1-期末预测之安全指数 题目很简单&#xff0c;直接上代码 #include <iostream> using namespace std; int main() {int n, sum 0;cin >> n;for (int i 0; i < n; i){int w, score;cin >> w >> score;sum w * score;}if (sum > 0…...

Doris中的本地routineload环境,用于开发回归测试用例

----------------2024-2-6-更新-------------- doris的routineload&#xff0c;就是从kafka中加载数据到表&#xff0c;特点是定时、周期性的从kafka取数据。 要想在本地开发测试routine load相关功能&#xff0c;需要配置kafka环境&#xff0c;尤其是需要增加routine load回…...

【开源项目阅读】Java爬虫抓取豆瓣图书信息

原项目链接 Java爬虫抓取豆瓣图书信息 本地运行 运行过程 另建项目&#xff0c;把四个源代码文件拷贝到自己的包下面 在代码爆红处按ALTENTER自动导入maven依赖 直接运行Main.main方法&#xff0c;启动项目 运行结果 在本地磁盘上生成三个xml文件 其中的内容即位爬取…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...