【MATLAB】使用随机森林在回归预测任务中进行特征选择(深度学习的数据集处理)
1.随机森林在神经网络的应用
当使用随机森林进行特征选择时,算法能够为每个特征提供一个重要性得分,从而帮助识别对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理速度。通过剔除不重要的特征,模型的复杂度降低,同时保持了较高的预测准确性。
随机森林是一种集成学习算法,利用多棵决策树对特征进行建模。由于其天然的并行化、抗过拟合的特性和对非线性关系的良好适应性,随机森林在特征选择中显示出强大的效果。此外,特征选择可以帮助理解数据,并为进一步的特征工程提供指导,有效地提高模型的预测性能。
通俗点讲就是,用科学、合理的方法去除掉数据集中不需要的特征。常用在回归预测任务的数据集处理中(也就是N个输入特征,一个输出特征)。
2.代码实现
这部分代码旨在准备 MATLAB 环境。它关闭了 MATLAB 的警告信息显示,关闭所有之前打开的图形窗口,清除了 MATLAB 工作区中的所有变量,并清空命令窗口。
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口
这段代码使用 readtable 函数从名为 "01.csv" 的 CSV 文件中读取数据并将其存储在变量 data 中。如果数据文件不包含表头,则需要使用 readmatrix 函数。
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数
这段代码将数据拆分为特征和目标变量。其中 X 存储假设前 2000 行数据的前 6 列是特征,y 存储假设前 2000 行数据的最后一列是目标变量。
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7}; % 假设最后一列是目标变量
这部分使用 TreeBagger 函数构建了一个包含 100 棵树的随机森林回归模型,并计算了袋外预测器的重要性。
ens = TreeBagger(100, X, y, 'Method', 'regression', 'OOBPredictorImportance', 'on');
在这个部分中,计算了特征的重要性得分,并将其进行了归一化处理。然后将其显示出来。
% 计算特征的重要性分数
featureImportance = ens.OOBPermutedVarDeltaError;
disp(featureImportance)
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);
这一部分可视化了特征重要性得分,通过绘制条形图展示各个特征的重要性。
% 可视化特征重要性
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');
这部分代码对特征的重要性得分进行排序,并选择了最重要的四个特征进行输出。同时,重新设置了图表的横坐标,使其显示最重要的特征名称。(笔者的数据集格式为6个输入一个输出的风力发电机功率数据集)
% 特征排序及输出
[sortedImportance, sortedIdx] = sort(normalizedFeatureImportance, 'descend');
topFeatures = sortedIdx(1:4); % 选择最重要的四个特征
topFeaturesNames = {'湿度', '真实风速', '气象台风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));
xticks(1:length(topFeaturesNames));
xticklabels(topFeaturesNames);
3.运行结果
运行结果如下(以笔者的风力发电机数据集为例):


4.完整代码
%% 清空环境变量
warning off % 关闭警告信息显示
close all % 关闭所有图形窗口
clear % 清除工作区变量
clc % 清空命令窗口
% 读取CSV文件
data = readtable('01.csv'); % 如果数据文件不包含表头,请使用readmatrix函数% 将数据拆分为特征和目标变量
X = data{1:2000, 1:6}; % 假设前6列是特征
y = data{1:2000, 7}; % 假设最后一列是目标变量ens = TreeBagger(100, X, y, 'Method', 'regression', 'OOBPredictorImportance', 'on');% 计算特征的重要性分数
featureImportance = ens.OOBPermutedVarDeltaError;
disp(featureImportance)
normalizedFeatureImportance = featureImportance / sum(featureImportance);
disp(normalizedFeatureImportance);
% 可视化特征重要性
bar(normalizedFeatureImportance);
xlabel('特征');
ylabel('重要性得分');
title('特征重要性');% 根据得分排序特征
[sortedImportance, sortedIdx] = sort(normalizedFeatureImportance, 'descend');
topFeatures = sortedIdx(1:4); % 选择最重要的四个特征% 输出最重要的特征
topFeaturesNames = {'湿度', '真实风速', '气象台风速', '风向', '温度', '气压'};
disp('最重要的特征是:');
disp(topFeaturesNames(topFeatures));% 重新设置图表横坐标
xticklabels(topFeaturesNames);
相关文章:
【MATLAB】使用随机森林在回归预测任务中进行特征选择(深度学习的数据集处理)
1.随机森林在神经网络的应用 当使用随机森林进行特征选择时,算法能够为每个特征提供一个重要性得分,从而帮助识别对目标变量预测最具影响力的特征。这有助于简化模型并提高其泛化能力,减少过拟合的风险,并且可以加快模型训练和推理…...
2024Node.js零基础教程(小白友好型),nodejs新手到高手,(六)NodeJS入门——http模块
047_http模块_获取请求行和请求头 hello,大家好,那第二节我们来介绍一下如何在这个服务当中来提取 HTT 请求报文的相关内容。首先先说一下关于报文的提取的方法,我在这个文档当中都已经记录好了,方便大家后续做一个快速的查阅。 …...
【数据结构与算法】(5)基础数据结构之队列 链表实现、环形数组实现详细代码示例讲解
目录 2.4 队列1) 概述2) 链表实现3) 环形数组实现 2.4 队列 1) 概述 计算机科学中,queue 是以顺序的方式维护的一组数据集合,在一端添加数据,从另一端移除数据。习惯来说,添加的一端称为尾,移除的一端称为头…...
(注解配置AOP)学习Spring的第十七天
基于注解配置的AOP 来看注解式开发 : 先把目标与通知放到Spring里管理 : Service("userService") public class UserServiceImpl implements UserService {Overridepublic void show1() {System.out.println("show1......");}Overridepublic void show2…...
[C++] opencv + qt 创建带滚动条的图像显示窗口代替imshow
在OpenCV中,imshow函数默认情况下是不支持滚动条的。如果想要显示滚动条,可以考虑使用其他库或方法来进行实现。 一种方法是使用Qt库,使用该库可以创建一个带有滚动条的窗口,并在其中显示图像。具体步骤如下: 1&…...
C#用Array类的Reverse方法反转数组中元素
目录 一、Array.Reverse 方法 1.重载 2.Reverse(Array, Int32, Int32) 3. Reverse(Array) 4.Reverse(T[]) 5. Reverse(T[], Int32, Int32) 二、实例 1.Array.Reverse 方法4种重载方法综合实例 2.Reverse(Array)方法的实例 一、Array.Reverse 方法 反转一维 Array 或部…...
iOS AlDente 1.0自动防过充, 拯救电池健康度
经常玩iOS的朋友可能遇到过长时间过充导致的电池鼓包及健康度下降问题。MacOS上同样会出现该问题,笔者用了4年的MBP上周刚拿去修了,就是因为长期不拔电源的充电,开始还是电量一半的时候不接电源会黑屏无法开机,最后连着电源都无法…...
春晚刘谦魔术——约瑟夫环
昨晚,刘谦在春晚上表演了一个魔术,通过对四张撕成两半的纸牌连续操作,最终实现了纸牌的配对。 这个魔术虽然原理不是很难,但是通过刘谦精湛的表演还是让这个魔术产生了不错的效果(虽然我感觉小尼的效果更不错ÿ…...
itextpdf使用:使用PdfReader添加图片水印
gitee参考代码地址:https://gitee.com/wangtianwen1996/cento-practice/tree/master/src/test/java/com/xiaobai/itextpdf 参考文章:https://www.cnblogs.com/wuxu/p/17371780.html 1、生成带有文字的图片 使用java.awt包的相关类生成带文字的图片&…...
如何为Kafka加上账号密码(二)
认证策略SASL/PLAIN 上篇文章中我们讲解了Kafka认证方式和基础概念,并比较了不同方式的使用场景。 我们在《2024年了,如何更好的搭建Kafka集群?》中集群统一使用PLAINTEXT通信。Kafka通常是在内网使用,但也有特殊的使用场景需要…...
【大数据】Flink on YARN,如何确定 TaskManager 数
Flink on YARN,如何确定 TaskManager 数 1.问题2.并行度(Parallelism)3.任务槽(Task Slot)4.确定 TaskManager 数 1.问题 在 Flink 1.5 Release Notes 中,有这样一段话,直接上截图。 这说明从 …...
ES节点故障的容错方案
ES节点故障的容错方案 1. es启动加载逻辑1.1 segment和translg组成和分析1.2 es节点启动流程1.3 es集群的初始化和启动过程 2. master高可用2.1 选主逻辑2.1.1 过滤选主的节点列表2.1.2 Bully算法2.1.2 类Raft协议2.1.3 元数据合并 2.2 HA切换 3. 分片高可用3.1 集群分片汇报3.…...
【Flink】FlinkSQL实现数据从Kafka到MySQL
简介 未来Flink通用化,代码可能就会转换为sql进行执行,大数据开发工程师研发Flink会基于各个公司的大数据平台或者通用的大数据平台,去提交FlinkSQL实现任务,学习Flinksql势在必行。 本博客在sql-client中模拟大数据平台的sql编辑器执行FlinkSQL,使用Flink实现数据从Kafka传…...
Unity GC
本文由 简悦 SimpRead 转码, 原文地址 mp.weixin.qq.com 简略版本 在 Unity 中,垃圾回收(Garbage Collection,GC)采用的是基于标记-清除(Mark and Sweep)算法的自动内存管理机制。 基于标记-清…...
Vue源码系列讲解——变化侦测篇【下】(Array的变化侦测)
目录 1. 前言 2. 在哪里收集依赖 3. 使Array型数据可观测 3.1 思路分析 3.2 数组方法拦截器 3.3 使用拦截器 4. 再谈依赖收集 4.1 把依赖收集到哪里 4.2 如何收集依赖 4.3 如何通知依赖 5. 深度侦测 6. 数组新增元素的侦测 7. 不足之处 8. 总结 1. 前言 上一篇文…...
【机器学习笔记】贝叶斯学习
贝叶斯学习 文章目录 贝叶斯学习1 贝叶斯学习背景2 贝叶斯定理3 最大后验假设MAP(Max A Posterior)4 极大似然假设ML(Maximum Likelihood)5 朴素贝叶斯NB6 最小描述长度MDL 1 贝叶斯学习背景 试图发现两件事情的关系(因果关系,先决条件&结论&#x…...
ElasticSearch之倒排索引
写在前面 本文看下es的倒排索引相关内容。 1:正排索引和倒排索引 正排索引就是通过文档id找文档内容,而倒排索引就是通过文档内容找文档id,如下图: 2:倒排索引原理 假定我们有如下的数据: 为了建立倒…...
win11安装mysql8.3.0压缩包版 240206
mysql社区版安装包版windows安装包下载地址 在系统环境变量path无点.的情况下 powershell 可以 .\ 或 ./ 开头表示当前文件夹cmd 可以直接命令或.\开头, 不能./开头 所以 .\ 在cmd和powershell中通用 步骤 在解压目录 .\mysqld --initialize-insecure root无密码初始化.\m…...
数据库索引与优化:深入了解索引的种类、使用与优化
数据库索引与优化:深入了解索引的种类、使用与优化 索引的种类 数据库索引是提高查询速度的重要手段之一,主要分为以下几种类型: 主键索引(Primary Key Index): 唯一标识表中的每一行数据,保…...
React 错误边界组件 react-error-boundary 源码解析
文章目录 捕获错误 hook创建错误边界组件 Provider定义错误边界组件定义边界组件状态捕捉错误渲染备份组件重置组件通过 useHook 控制边界组件 捕获错误 hook getDerivedStateFromError 返回值会作为组件的 state 用于展示错误时的内容 componentDidCatch 创建错误边界组件 P…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
