AI算法工程师-非leetcode题目总结
AI算法工程师-非leetcode题目总结
- 除了Leetcode你还需要这些
- 实现nms
- 旋转矩形IOU
- 手动实现BN
- 手动实现CONV
- 实现CrossEntropyLoss
除了Leetcode你还需要这些
希望大家留言,我可以进行补充。持续更新~~~
实现nms
import numpy as np
def nms(dets, threshold):x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]score = dets[:, 4]area = (x2 - x1 +1)* (y2-y1+1)keep = []order = score.argsort()[::-1]while len(order) >= 1:i = order[0]keep.append(i)xx1 = np.maximum(x1[i], x1[order[1:]])yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])w = np.maximum(xx2-xx1 +1, 0)h = np.maximum(yy2-yy1+1, 0)inter = w * hiou = inter / (area[i] + area[order[1:]] - inter)idx = np.where(iou <= threshold)[0]order = order[idx+1]return keepdets = np.array([[10, 10, 50, 50, 0.9] , [20, 20, 50, 50, 0.8] ,[50, 50, 100, 100, 0.7] ])
print(nms(dets, 0.5))
旋转矩形IOU
import numpy as np
import cv2# 中心点 矩形的w h, 旋转的theta(角度,不是弧度)
def iou_rotate_calculate(boxes1, boxes2):area1 = boxes1[:, 2] * boxes1[:, 3]area2 = boxes2[:, 2] * boxes2[:, 3]ious = []for i, box1 in enumerate(boxes1):temp_ious = []r1 = ((box1[0], box1[1]), (box1[2], box1[3]), box1[4])for j, box2 in enumerate(boxes2):r2 = ((box2[0], box2[1]), (box2[2], box2[3]), box2[4])int_pts = cv2.rotatedRectangleIntersection(r1, r2)[1]if int_pts is not None:order_pts = cv2.convexHull(int_pts, returnPoints=True)int_area = cv2.contourArea(order_pts)inter = int_area * 1.0 / (area1[i] + area2[j] - int_area)temp_ious.append(inter)else:temp_ious.append(0.0)ious.append(temp_ious)return np.array(ious, dtype=np.float32)
手动实现BN
y = x − m e a n / v a r + e − 6 , . y = x - mean /var+e^-6,. y=x−mean/var+e−6,.
BN在训练的过程中和测试的过程中应该如何设置:
训练时的数据量大,分布更加稳定;eval数据量有限不建议大规模更改mean和var;
eval: trainning=False, track_running_stats=True。这个是期望中的测试阶段的设置,此时BN会用之前训练好的模型中的(假设已经保存下了)running_mean和running_var并且不会对其进行更新。一般来说,只需要设置model.eval()其中model中含有BN层,即可实现这个功能。
train: trainning=True, track_running_stats=True。这个是期望中的训练阶段的设置,此时BN将会跟踪整个训练过程中batch的统计特性。
import numpy as np
class BN:def __init__(self, momentum, eps, num_features):"""初始化参数值:param momentum: 追踪样本整体均值和方差的动量:param eps: 防止数值计算错误:param num_features: 特征数量"""# 对每个batch的mean和var进行追踪统计self._running_mean = 0self._running_var = 1# 更新self._running_xxx时的动量self._momentum = momentum# 防止分母计算为0self._eps = eps# 对应论文中需要更新的beta和gamma,采用pytorch文档中的初始化值self._beta = np.zeros(shape=(num_features, ))self._gamma = np.ones(shape=(num_features, ))def batch_norm(self, x):"""BN向传播:param x: 数据:return: BN输出"""x_mean = x.mean(axis=0)x_var = x.var(axis=0)# 对应running_mean的更新公式self._running_mean = (1-self._momentum)*x_mean + self._momentum*self._running_meanself._running_var = (1-self._momentum)*x_var + self._momentum*self._running_var# 对应论文中计算BN的公式x_hat = (x-x_mean)/np.sqrt(x_var+self._eps)y = self._gamma*x_hat + self._betareturn y
手动实现CONV
使用了简化版本,类实现的太多了,背不上;
import numpy as npdef conv2d_numpy(input_data, kernel, stride=1, padding=0):# 获取输入数据的尺寸input_height, input_width = input_data.shape# 获取卷积核的尺寸kernel_height, kernel_width = kernel.shape# 计算输出图像的尺寸output_height = (input_height - kernel_height + 2 * padding) // stride + 1output_width = (input_width - kernel_width + 2 * padding) // stride + 1# 初始化输出图像output_data = np.zeros((output_height, output_width))# 填充输入数据(根据填充数量添加额外的行和列)if padding > 0:input_data = np.pad(input_data, ((padding, padding), (padding, padding)), mode='constant')# 执行卷积操作for i in range(0, input_height - kernel_height + 1, stride):for j in range(0, input_width - kernel_width + 1, stride):output_data[i // stride, j // stride] = np.sum(input_data[i:i + kernel_height, j:j + kernel_width] * kernel)return output_data# 创建一个示例的二维图片数据(4x4 像素)
image = np.array([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]], dtype=np.float32)# 定义一个卷积核(滤波器)
kernel = np.array([[1, 1],[0, -1]], dtype=np.float32)# 执行自定义的卷积操作
result = conv2d_numpy(image, kernel, stride=1, padding=0)# 打印卷积结果
print(result)
实现CrossEntropyLoss
import torchdef my_cross_entropy(input, target, reduction="mean"):# input.shape: torch.size([-1, class])# target.shape: torch.size([-1])# reduction = "mean" or "sum"# input是模型输出的结果,与target求loss# target的长度和input第一维的长度一致# target的元素值为目标class# reduction默认为mean,即对loss求均值# 还有另一种为sum,对loss求和# 这里对input所有元素求expexp = torch.exp(input)# 根据target的索引,在exp第一维取出元素值,这是softmax的分子tmp1 = exp.gather(1, target.unsqueeze(-1)).squeeze()# 在exp第一维求和,这是softmax的分母tmp2 = exp.sum(1)# softmax公式:ei / sum(ej)softmax = tmp1 / tmp2# cross-entropy公式: -yi * log(pi)# 因为target的yi为1,其余为0,所以在tmp1直接把目标拿出来,# 公式中的pi就是softmax的结果log = -torch.log(softmax)# 官方实现中,reduction有mean/sum及none# 只是对交叉熵后处理的差别if reduction == "mean": return log.mean()else: return log.sum()my_cross_entropy([1, 0], [1,1])
相关文章:
AI算法工程师-非leetcode题目总结
AI算法工程师-非leetcode题目总结 除了Leetcode你还需要这些实现nms旋转矩形IOU手动实现BN手动实现CONV实现CrossEntropyLoss 除了Leetcode你还需要这些 希望大家留言,我可以进行补充。持续更新~~~ 实现nms import numpy as np def nms(dets, threshold):x1 dets…...
2.6:冒泡、简选、直插、快排,递归,宏
1.冒泡排序、简单选择排序、直接插入排序、快速排序(升序) 程序代码: 1 #include<stdio.h>2 #include<string.h>3 #include<stdlib.h>4 void Bubble(int arr[],int len);5 void simple_sort(int arr[],int len);6 void insert_sort(int arr[],in…...
FastDFS安装并整合Openresty
FastDFS安装并整合Openresty 一、安装环境准备【CentOS7.9】二、FastDFS--tracker安装2.1.下载fastdfs2.2.FastDFS安装环境2.3.安装FastDFS依赖libevent库2.4.安装libfastcommon2.5.安装 libserverframe 网络框架2.6.tracker编译安装2.7.安装之后文件目录介绍2.8.错误处理2.9.配…...
93 log4j-slf4j-impl 搭配上 log4j-to-slf4j 导致的 StackOverflow
前言 呵呵 最近想要 做一个 mongo 低版本的客户端读取高版本的服务端传递过来的数据造成的一个错误的时候, 出现了这样的问题 引入了 mongo-java-driver 之后, 使用相关 api 的时候会触发 com.mongo.internal.connection.BaseCluser 的初始化, 其依赖的 Loggers 间接的依赖…...
客户端会话技术-Cookie
一、会话技术 1.1 概述 会话:一次会话中包含多次**请求和响应** 一次会话:浏览器第一次给服务器资源发送请求,此时会话建立,直到有一方断开为止 会话的功能:在一次会话的范围内的多次请求间,共享数据 …...
rsa加密登录解决方案
1.问题 账密登录方式中用户输入密码后,把账号、密码通过http传输到后端进行校验,然而密码属于敏感信息,不能以明文传输,否则容易被拦截窃取,因此需要考虑如何安全传输密码 2.解决方案 使用rsa加密方式,r…...
速盾:海外服务器用了cdn还是卡怎么办
海外服务器使用CDN卡顿问题的解决办法 在如今互联网高速发展的时代,海外服务器成为了许多企业和个人用户的首选,因为它能够提供更高的带宽和更稳定的网络连接。然而,尽管海外服务器在网络性能方面表现出色,但在使用过程中仍然可能…...
[python-opencv] PNG 裁切物体
拿到一组图PNG的图,边缘有点太宽了,需要裁切一下,为了这个需求,简单复习一下基本语法。 1. 读取PNG的4个通道 image cv.imread(image_path, cv.IMREAD_UNCHANGED) 附参数说明: IMREAD_UNCHANGED -1 返…...
机器学习——有监督学习和无监督学习
有监督学习 简单来说,就是人教会计算机学会做一件事。 给算法一个数据集,其中数据集中包含了正确答案,根据这个数据集,可以对额外的数据希望得到一个正确判断(详见下面的例子) 回归问题 例如现在有一个…...
MySQL单主模式部署组复制集群
前言 本篇文章介绍MySQL8.0.27版本的组复制详细搭建过程,教你如何快速搭建一个三节点的单主模式组复制集群。 实际上,MySQL组复制是MySQL的一个插件 group_replication.so,组中的每个成员都需要配置并安装该插件,配置和安装过程…...
【大厂AI课学习笔记】【1.5 AI技术领域】(10)对话系统
对话系统,Dialogue System,也称为会话代理。是一种模拟人类与人交谈的计算机系统,旨在可以与人类形成连贯通顺的对话,通信方式主要有语音/文本/图片,当然也可以手势/触觉等其他方式 一般我们将对话系统,分…...
【ARM 嵌入式 编译系列 2.7 -- GCC 编译优化参数详细介绍】
请阅读【嵌入式开发学习必备专栏 】 文章目录 GCC 编译优化概述常用优化等级-O1 打开的优化选项-O2 打开的优化选项-O3 打开的优化选项-Os 打开的优化选项优化技术使用优化选项的注意事项GCC 编译优化概述 GCC(GNU Compiler Collection)包含了用于C、C++、Objective-C、Fort…...
《剑指 Offer》专项突破版 - 面试题 38、39 和 40 : 通过三道面试题详解单调栈(C++ 实现)
目录 面试题 38 : 每日温度 面试题 39 : 直方图最大矩形面积 方法一、暴力求解 方法二、递归求解 方法三、单调栈法 面试题 40 : 矩阵中的最大矩形 面试题 38 : 每日温度 题目: 输入一个数组,它的每个数字是某天的温度。请计算每天需要等几天才会…...
动态规划C语言
#include <stdio.h> #include <stdlib.h> //0-1背包问题是一种经典的组合优化问题, //问题描述为:有一个给定容量的背包和一组具有不同价值和重量的物品,如何选择物品放入背包中,以使得背包中物品的总价值最大化&…...
基于微信小程序的校园二手交易平台
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...
K8S系列文章之 [使用 Alpine 搭建 k3s]
官方文档:K3s - 轻量级 Kubernetes | K3s 官方描述,可运行在 systemd 或者 openrc 环境上,那就往精简方向走,使用 alpine 做系统。与 RHEL、Debian 的区别,主要在防火墙侧;其他基础配置需求类似࿰…...
计算机视觉 | OpenCV 实现手势虚拟控制亮度和音量
Hi,大家好,我是半亩花海。在当今科技飞速发展的时代,我们身边充斥着各种智能设备,然而,如何更便捷地与这些设备进行交互却是一个不断被探索的课题。本文将主要介绍一个基于 OpenCV 的手势识别项目,通过手势…...
python28-Python的运算符之三目运算符
Python可通过if语句来实现三目运算符的功能,因此可以近似地把这种if语句当成三目运算符。作为三目运算符的f语句的语法格式如下 True_statements if expression else False_statements 三目运算符的规则是:先对逻辑表达式expression求值,如果逻辑表达式…...
高德 API 10009
问题 笔者使用高德地图所提供的API接口,访问接口报错 {"info":"USERKEY_PLAT_NOMATCH","infocode":"10009","status":"0","sec_code_debug":"d41d8cd98f00b204e9800998ecf8427e"…...
Go 语言中如何大小端字节序?int 转 byte 是如何进行的?
嗨,大家好!我是波罗学。 本文是系列文章 Go 技巧第十五篇,系列文章查看:Go 语言技巧。 我们先看这样一个问题:“Go 语言中,将 byte 转换为 int 时是否涉及字节序(endianness)&#x…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果:观察者模式
JS设计模式(4):观察者模式 一、引入 在开发中,我们经常会遇到这样的场景:一个对象的状态变化需要自动通知其他对象,比如: 电商平台中,商品库存变化时需要通知所有订阅该商品的用户;新闻网站中࿰…...
并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
